Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 166 - Non-Clinical Statistics, Personalized Medicine, and Other Topics
Type: Contributed
Date/Time: Tuesday, August 10, 2021 : 10:00 AM to 11:50 AM
Sponsor: Biopharmaceutical Section
Abstract #318019
Title: Bayesian Multivariate Probability of Success Using Historical Data with Family-Wise Error Rate Control
Author(s): Ethan Alt* and Matthew Psioda and Joseph G Ibrahim
Companies: University of North Carolina at Chapel Hill and UNC Chapel Hill and UNC
Keywords: Probability of success; Statistical power; Multiplicity; Power prior; Historical data
Abstract:

(*) Student Paper Award Winner

Given the cost and duration of phase III and phase IV clinical trials, the development of statistical methods for go/no-go decisions is vital. In this paper, we introduce a Bayesian methodology to compute the probability of success based on the current data of a treatment regimen for the multivariate linear model. Our approach utilizes a Bayesian seemingly unrelated regression model, which allows for multiple endpoints to be modeled jointly even if the covariates between the endpoints are different. Correlations between outcomes are explicitly modeled. This Bayesian joint modeling approach unifies single and multiple testing procedures under a single framework. We develop an approach to multiple testing that asymptotically guarantees exact family-wise error rate control, and is more powerful than frequentist approaches to multiplicity. The method effectively yields those of Ibrahim et al. and Chuang-Stein as special cases, and, to our knowledge, is the only method that allows for robust sample size determination for multiple endpoints and/or hypotheses.


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program