Online Program Home
  My Program

All Times EDT

Abstract Details

Activity Number: 77 - Causal Inference When Resources Are Limited
Type: Topic-Contributed
Date/Time: Monday, August 9, 2021 : 10:00 AM to 11:50 AM
Sponsor: Biometrics Section
Abstract #317481
Title: Optimal Individualized Decision Rules Using Instrumental Variable Methods
Author(s): Hongxiang Qiu*
Companies: Department of Biostatistics, University of Washington
Keywords: individualized treatment; unmeasured confounders; limited resources
Abstract:

There is an extensive literature on the estimation and evaluation of optimal individualized treatment rules in settings where all confounders of the effect of treatment on outcome are observed. We study the development of individualized decision rules in settings where some of these confounders may not have been measured but a valid binary instrument is available for a binary treatment. We first consider individualized treatment rules, which will naturally be most interesting in settings where it is feasible to intervene directly on treatment. We then consider a setting where intervening on treatment is infeasible, but intervening to encourage treatment is feasible. In both of these settings, we also handle the case that the treatment is a limited resource so that optimal interventions focus the available resources on those individuals who will benefit most from treatment. Given a reference rule, we evaluate an optimal individualized rule by its average causal effect relative to a prespecified reference rule. We develop methods to estimate optimal individualized rules and construct asymptotically efficient plug-in estimators of the corresponding average causal effect relat


Authors who are presenting talks have a * after their name.

Back to the full JSM 2021 program