Abstract:
|
The grid cells in the mammalian medial entorhinal cortex exhibit striking hexagon firing patterns when the agent navigates in the open field. It is hypothesized that the grid cells are involved in path integration so that the agent is aware of its self-position by accumulating its self-motion. Assuming the grid cells form a vector representation of self-position, we elucidate a minimally simple recurrent model for grid cells' path integration based on two coupled matrix Lie algebras that underlie two coupled rotation systems that mirror the agent's self-motion: (1) When the agent moves along a certain direction, the vector is rotated by a generator matrix. (2) When the agent changes direction, the generator matrix is rotated by another generator matrix. Our experiments show that our model learns hexagonal grid response patterns that resemble the firing patterns observed from the grid cells in the brain. Furthermore, the learned model is capable of near exact path integration, and it is also capable of error correction. Our model is novel and simple, with explicit geometric and algebraic structures. Joint work with Ruiqi Gao, Jianwen Xie, Xue-Xin Wei, Song-Chun Zhu.
|