Online Program Home
My Program

Abstract Details

Activity Number: 230 - Recent Advances in Nonexchangeable, Dependent, Random Partition and Feature Allocation Models
Type: Topic Contributed
Date/Time: Monday, July 30, 2018 : 2:00 PM to 3:50 PM
Sponsor: International Society for Bayesian Analysis (ISBA)
Abstract #328721 Presentation
Title: Attraction Indian Buffet Distribution
Author(s): David Dahl* and Richard Warr
Companies: Brigham Young University and Brigham Young University
Keywords: Indian buffet process; Latent feature models; Feature matrix; Bayesian nonparametrics; Pairwise distance; Pairwise information

Latent feature models seek to uncover hidden categorical variables that explain observed data. These models often use the Indian buffet process (IBP), a distribution over a binary feature matrix with an infinite number of columns and one row per observation. The IBP assumes that the observations are exchangeable, which is not reasonable in the presence of pairwise similarity information. We propose the attraction Indian buffet distribution (aIBD), a distribution for a binary feature matrix indexed by pairwise similarity. Our formulation preserves many of the properties of the original IBP, including having the same distribution of the total number of features. Thus, much of the interpretation and intuition that one has for the IBP carries over directly to our aIBD. A temperature parameter controls the degree to which the similarity information affects feature sharing. The probability function can be written explicitly and has a tractable normalizing constant, making posterior inference on hyperparameters straight-forward using standard MCMC methods. We demonstrate the feasibility and performance of our method in examples.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2018 program