Online Program Home
My Program

Abstract Details

Activity Number: 302 - Omics I
Type: Contributed
Date/Time: Tuesday, July 31, 2018 : 8:30 AM to 10:20 AM
Sponsor: Biometrics Section
Abstract #328379
Title: A Bayesian Hidden Markov Model for Detecting Differentially Methylated Regions
Author(s): Tieming Ji*
Companies: University of Missouri at Columbia
Keywords: Bayesian hidden Markov models; Bisulfite sequencing experiments; Differentially methylated regions; Hyper-methylation; Hypo-methylation

Alterations in DNA methylation have been linked to the development and progression of many diseases. The technique of bisulfite sequencing provides methylation profiles at base resolution. As more bisulfite sequencing data becomes available, there is a growing need to utilize such data to infer methylation aberrations related to a given disease of interest. Specifically, it is necessary to develop automated and powerful algorithms that can accurately identify differentially methylated regions between treatment groups. We adopt a Bayesian approach using the hidden Markov model to account for inherent dependence in read count data. A Bayesian approach that borrows information across an entire chromosome improves the reliability of statistical inferences. The proposed hidden Markov model considers location dependence among genomic loci by incorporating correlation structures as a function of genomic distance. Methylation states are inferred by identifying the best sequence of latent states from observations. Real datasets and simulation studies based on the real datasets' data structure are used to illustrate the reliability and success of our proposed method.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2018 program