Online Program Home
My Program

Abstract Details

Activity Number: 80
Type: Contributed
Date/Time: Sunday, July 31, 2016 : 4:00 PM to 5:50 PM
Sponsor: Business and Economic Statistics Section
Abstract #318594 View Presentation
Title: Small-Sample Methods for Cluster-Robust Variance Estimation and Hypothesis Testing in Fixed Effects Models
Author(s): James Eric Pustejovsky* and Elizabeth Tipton
Companies: The University of Texas at Austin and Columbia University
Keywords: Robust Standard Errors ; Clustering ; Fixed Effects ; Small Samples ; Sandwich Estimator

In longitudinal panel models with unobserved effects, fixed effects estimation is often paired with cluster-robust variance estimation (CRVE) in order to account for un-modeled dependence among the errors for each unit. CRVE is asymptotically consistent as the number of cross-sectional units increases, but can be biased downward for sample sizes often found in applied work, leading to hypothesis tests with overly liberal rejection rates. One solution is to use bias-reduced linearization (BRL), which corrects the CRVE so that it is unbiased under a working model, and t-tests with Satterthwaite degrees of freedom. We propose a generalization of BRL that can be applied in panel models with arbitrary sets of fixed effects, where the original BRL method is undefined, and describe how to apply the method when the regression is estimated after absorbing the fixed effects. We also propose a small-sample test for multiple-parameter hypotheses, which generalizes the Satterthwaite approximation for t-tests. In simulations covering a variety of study designs that occur in economic applications, we find that the small-sample test has Type I error very close to nominal levels.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2016 program

Copyright © American Statistical Association