JSM 2014 Home
Online Program Home
My Program

Legend: Boston Convention & Exhibition Center = CC, Westin Boston Waterfront = W, Seaport Boston Hotel = S
A * preceding a session name means that the session is an applied session.
A ! preceding a session name means that the session reflects the JSM meeting theme.

Activity Details


CE_04C Sat, 8/2/2014, 8:30 AM - 5:00 PM CC-161
Hierarchical Bayesian Modeling and Analysis for Spatial Data — Professional Development Continuing Education Course
ASA , Section on Bayesian Statistical Science
In this course we will describe hierarchical modeling and related Markov chain Monte Carlo (MCMC) methods for spatial statistics. We will begin by outlining and providing illustrative examples of the three types of spatial data: point-level (geostatistical), areal (lattice), and spatial point patterns. We then describe both exploratory data analysis tools and traditional modeling approaches for point-referenced data. Since our approach is fully model-based through the use of Gaussian processes, we develop the basics of spatial Gaussian process models. Approaches from traditional geostatistics (variogram fitting, kriging, etc.) will be briefly covered here. We then turn to areal data models, again starting with choropleth maps and other displays and progressing towards more formal model specifications, e.g., Markov random fields that underlie the conditional, intrinsic, and simultaneous autoregressive (CAR, IAR, and SAR) models widely used in areal data settings. The remainder of our presentation will cover hierarchical modeling for both univariate and multivariate spatial response data, including Bayesian kriging and lattice modeling, as well as more advanced issues such as anisotropy and nonstationarity. We also include a discussion of spatial point process models, and modern computational approaches for very large data sets (the so-called ``big N problem"). Short course participants should have an M.S. understanding of mathematical statistics at, say, the Hogg/Craig/Tanis or Casella/Berger levels, as well as basic familiarity with Bayesian modeling and computing at the Carlin/Louis or Gelman et al. levels. We will not assume any significant previous exposure to spatial or spatiotemporal methods.
Instructor(s): Sudipto Banerjee, University of Minnesota, Bradley P. Carlin, University of Minnesota, Alan Gelfand, Duke University



2014 JSM Online Program Home

For information, contact jsm@amstat.org or phone (888) 231-3473.

If you have questions about the Professional Development program, please contact the Education Department.

The views expressed here are those of the individual authors and not necessarily those of the JSM sponsors, their officers, or their staff.

ASA Meetings Department  •  732 North Washington Street, Alexandria, VA 22314  •  (703) 684-1221  •  meetings@amstat.org
Copyright © American Statistical Association.