LOOKING TO THE **PAST** TO PREDICT THE **FUTURE**

Today, information is **abundant** yet often **complex**. Statisticians play a **pivotal role** in harnessing data to unravel patterns, trends, and insights in numerous domains to **extract meaningful predictions**.

Here, in celebration of Mathematics and Statistics Awareness Month, **American Statistical Association members** with expertise in climate science, sports analytics, epidemiology, and economics **answer the question:**

What data set would you suggest for high-school students and their teachers if they want to learn about how predictions are made in your area of expertise?

BO LI, UNIVERSITY OF ILLINOIS

You can easily download the local data specific to your area from the **National Oceanic and Atmospheric Administration Climate Data Online** (*www.ncei.noaa.gov/cdo-web*). I would recommend starting with **daily temperature data from a selection of weather stations**.

ASA

RON YURKO, CARNEGIE MELLON UNIVERSITY

The SCORE Network maintains a data repository (*data.scorenetwork.org*) with data sets and prediction problems across a variety of sports, such as forecasting tennis **match outcomes**. It is also easy to access data using various packages in the R programming language listed in the **CRAN Task View: Sports Analytics** (*cran.r-project.org/web/views/SportsAnalytics.html*).

MICHAEL JACKSON, RICE UNIVERSITY

I think macroeconomic data would be a great place for high-school students to start with and potentially S&P 500 data (*bit.ly/SandP500Data*) so they can look at the market as a whole. And potentially fundamental data from the top 10 stocks on the S&P 500. I think Wharton Research Data Services (*wrds-www.wharton. upenn.edu*) has a good data set that can be used for academic purposes.

ALEXANDRA HANLON AND TANNER BARBOUR, VIRGINIA TECH

Given that we are often asked to create clinical prediction models for cancer **patient outcomes as a function of baseline demographic and clinical factors**, a suggestion would be the **SEER database** (*seer. cancer.gov*). I also recommend the **UK Biobank** (*www.ukbiobank.ac.uk*) as a resource for **building phenotypic profiles** of health outcomes.

GET THE TOOLS OF THE TRADE

These **ASA members** also weighed in on the best tools for beginners to use for **creating visualizations** with data from sets like those mentioned above. There was a unanimous answer: **R**, along with several associated packages such as **ggplot2**, **plotly**, and **ggvis**.