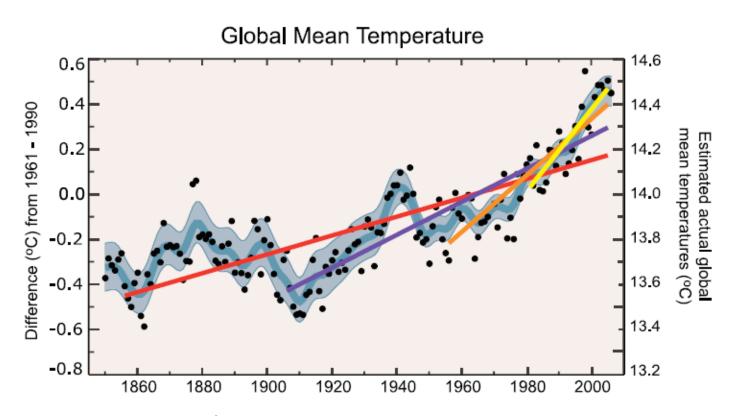


Math and Global Temperature

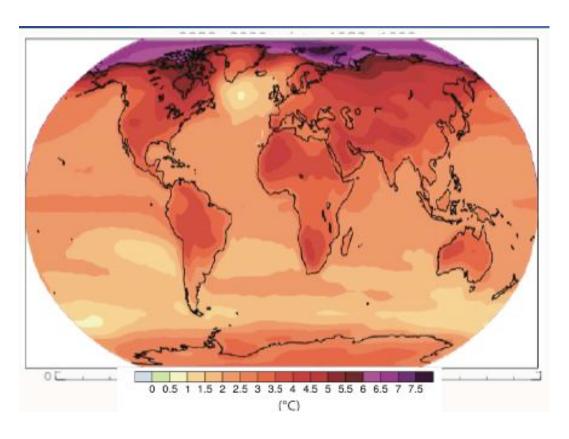
Mary Lou Zeeman
Bowdoin College
&
Math and Climate
Research Network

Thanks to: many friends & colleagues



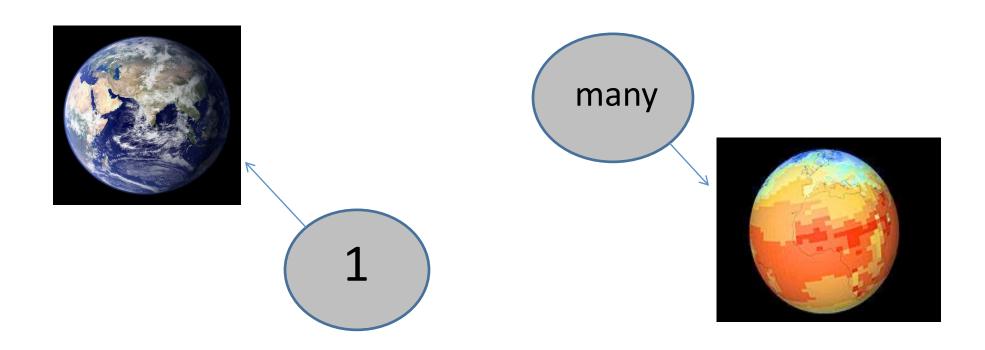
Evidence of a Changing Climate

Intergovernmental Panel on Climate Change (IPCC): Warming is "unequivocal"

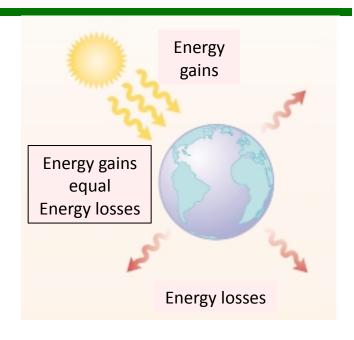

Dots: yearly average

Curve: decadal average

Blue: uncertainty interval

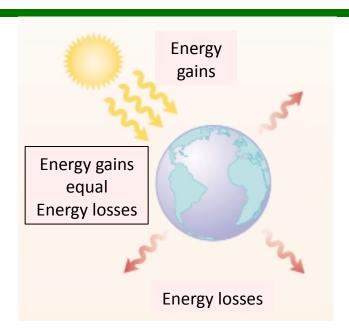

Why do we try to predict?

Warming is NOT uniform



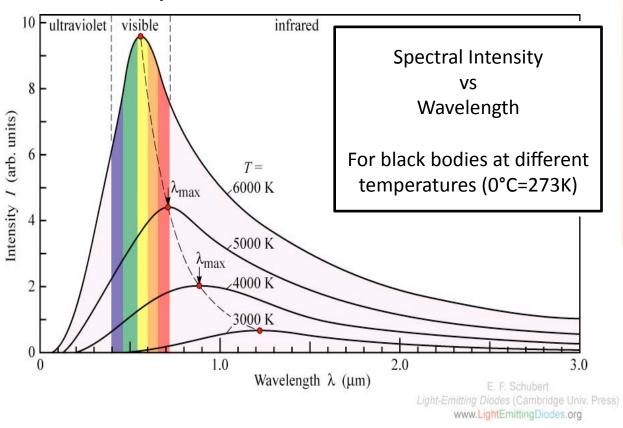
Why use Mathematical Models?

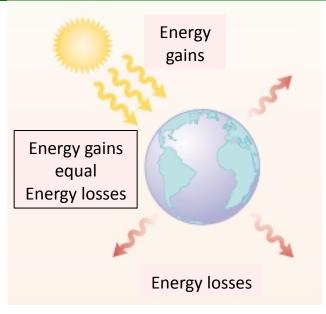
Simplest Energy Balance Model



CIMSS/ U Wisc

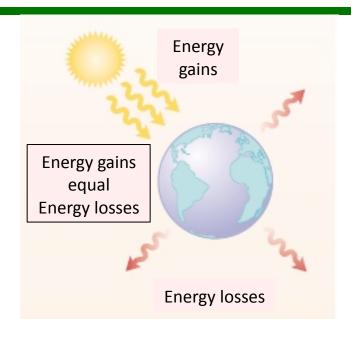
Simplest Energy Balance Model


PLAN: Use this model to understand the role of greenhouse gases in regulating our temperature



Understanding Radiated Energy

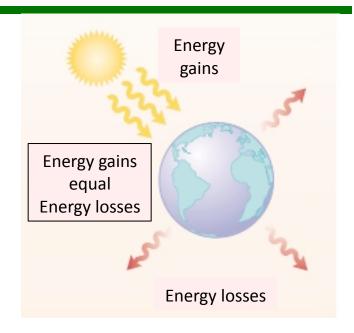
Black Body Radiation - Planck


Sun: ~6000K, emits mainly in ultraviolet (UV) and visible spectrum (shortwave)

Earth: ~300K, emits mainly in infrared (IR) spectrum (longwave)

Total energy flux over all wavelengths for temp T is $\sigma T^4 = (5.67 \times 10^{-8}) T^4$ -- Stefan-Boltzmann

Question: What is Earth's average global annual temperature T? What do you think?

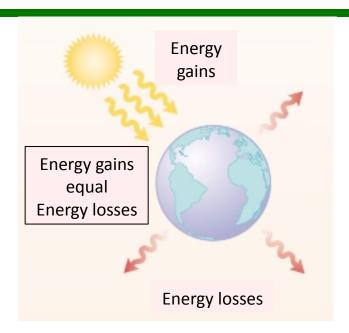


Question: What is Earth's average

global annual temperature T?

What do you think?

Answer: 15°C (59°F)


Question: What is Earth's average

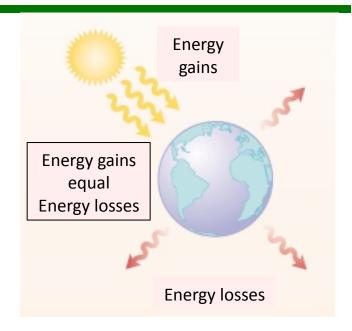
global annual temperature T_e?

What do you think?

Answer: 15°C (59°F)

Question: Why? What controls it?

Question: What is Earth's average


global annual temperature T_e?

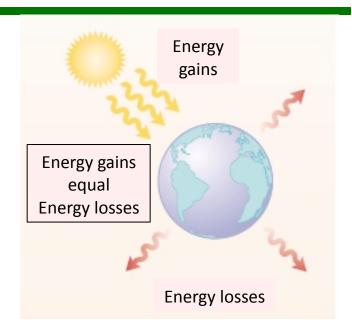
What do you think?

Answer: 15°C (59°F)

Question: Why? What controls it?

Answer: Lots of things!

Question: What is Earth's average


global annual temperature T_e?

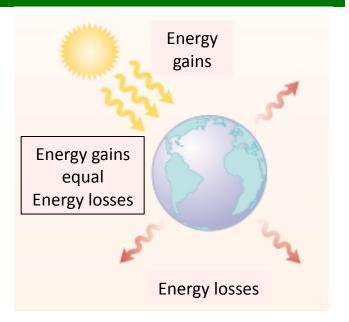
What do you think?

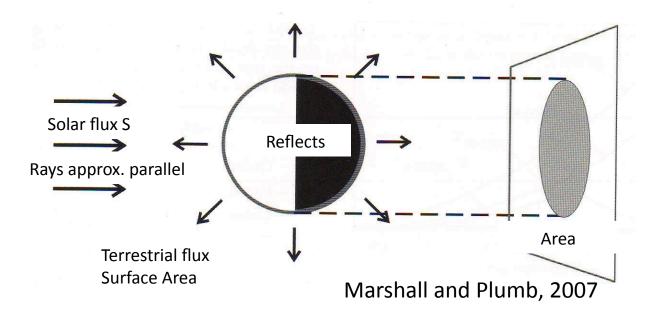
Answer: 15°C (59°F)

Question: Why? What controls it?

Answer: Lots of things!

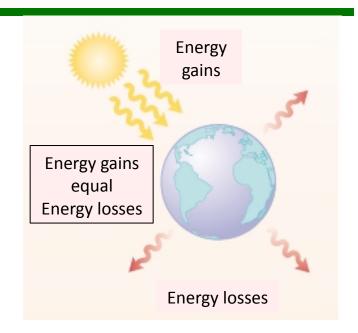
Let's use math to test this hypothesis: Earth's temperature is a consequence of

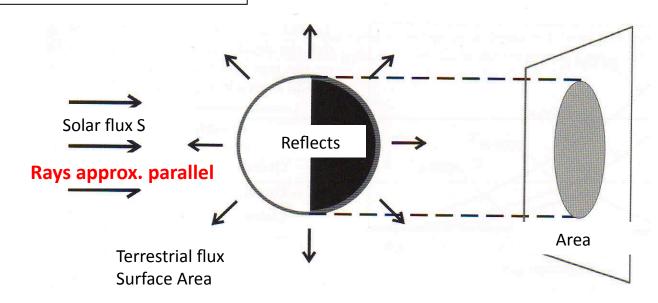

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)


So we pretend the atmosphere is transparent to radiation: "no atmosphere"

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

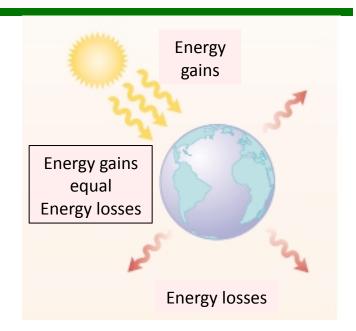


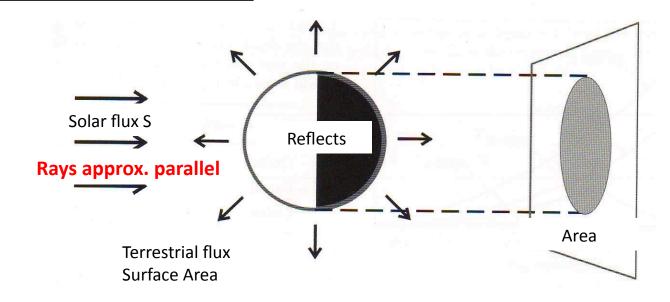


Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: Why are the rays from the sun approx. parallel? Which hypothesis?

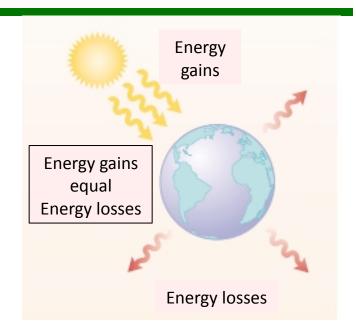


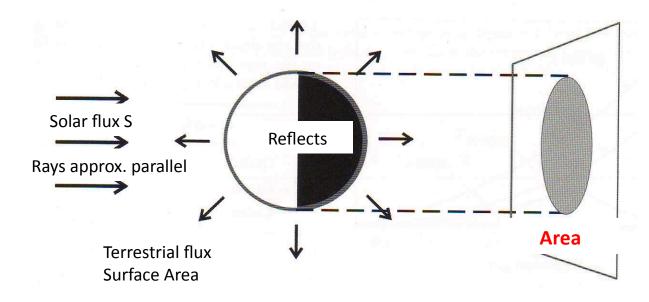

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: Why are the rays from the sun approx. parallel? Which hypothesis?

Answer: Sun is so far away (hypothesis 2)

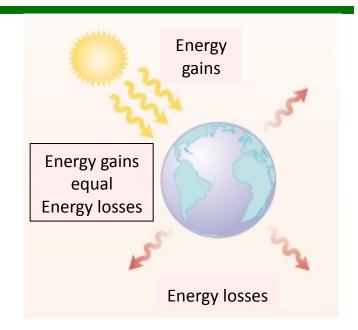


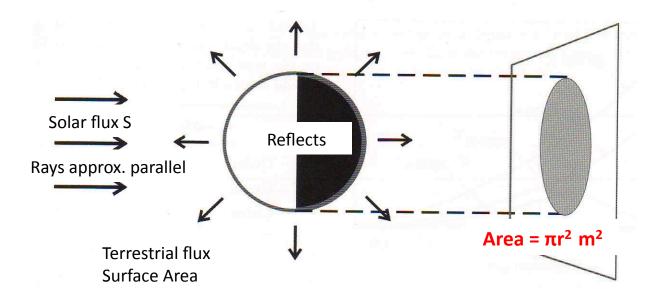


Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What's the cross sectional area of the Earth (radius r)? Which hypothesis?

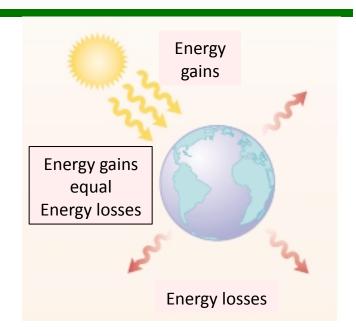


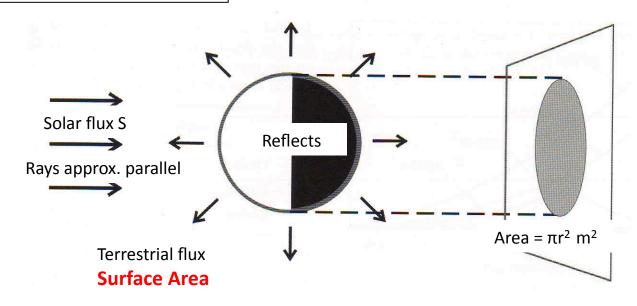

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What's the cross sectional area of the Earth (radius r)? Which hypothesis?

Answer: Area = πr^2 m² (hypothesis 3)

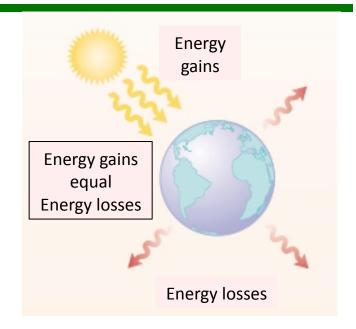


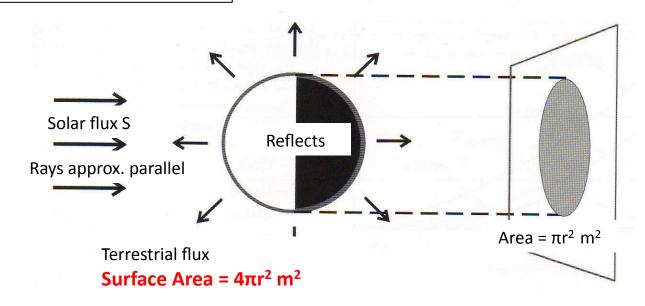


Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What's the surface area of the Earth (radius r)? Which hypothesis?

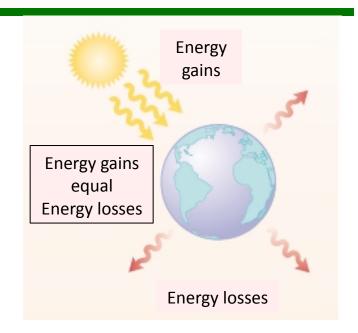


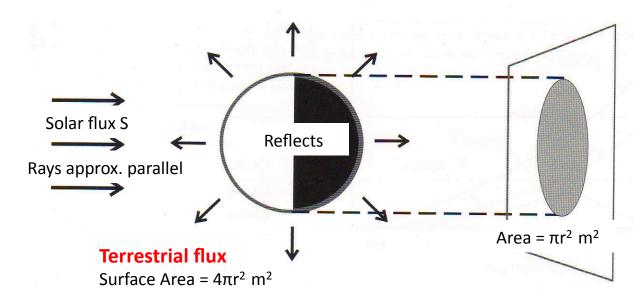

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What's the surface area of the Earth (radius r)? Which hypothesis?

Answer: Surface Area = $4\pi r^2$ (hypothesis 3)

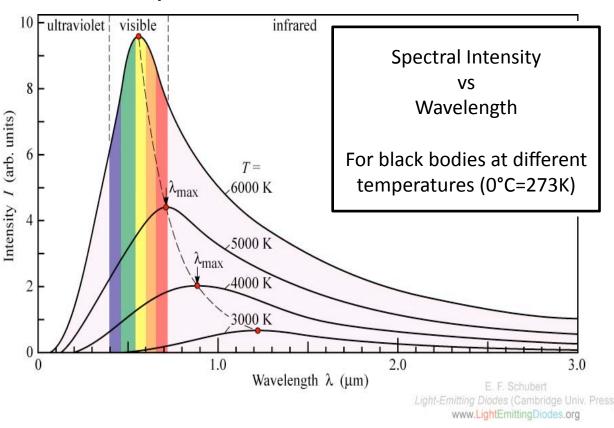


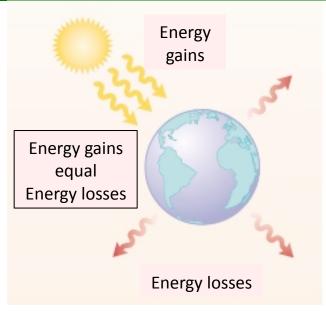


Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What's the terrestrial flux? Which hypothesis?





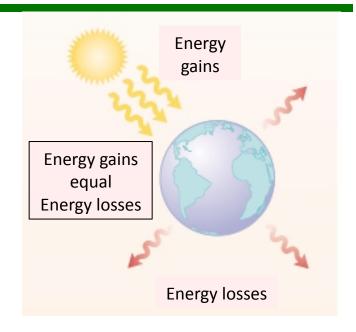
Figuring Out Terrestrial Flux

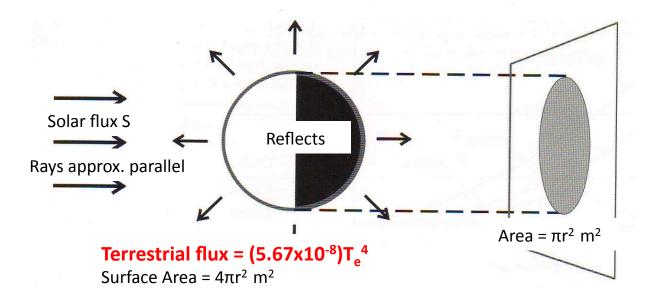
Black Body Radiation - Planck

Sun: ~6000K, emits mainly in ultraviolet (UV) and visible spectrum (shortwave)

Earth: ~300K, emits mainly in infrared (IR) spectrum (longwave)

Total energy flux over all wavelengths for temp T is $\sigma T^4 = (5.67 \times 10^{-8}) T^4$ -- Stefan-Boltzmann

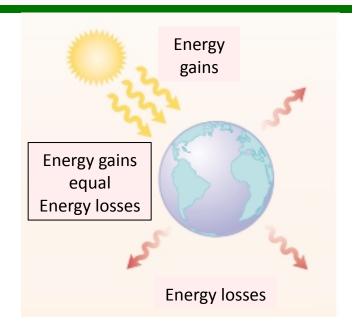

Hypothesis: Earth's temperature is a consequence of

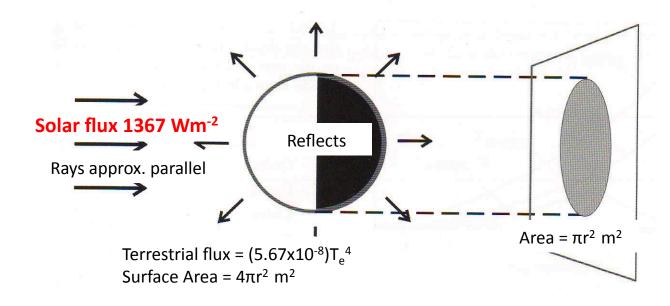

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What's the terrestrial flux? Which

hypothesis?

Answer: Terrestrial flux = $(5.67x10^{-8})T^4$ Wm⁻² (hyp. 1)

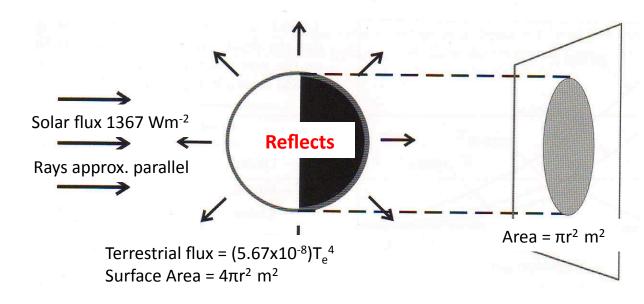



Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What's the Solar flux? Which hypothesis?

Answer: Solar flux $S = 1367 \text{ Wm}^{-2}$ (hypothesis 1,2)

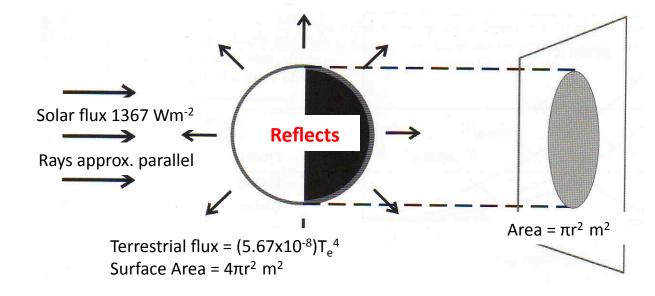


Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What fraction of solar radiation does the earth reflect? What hypothesis?

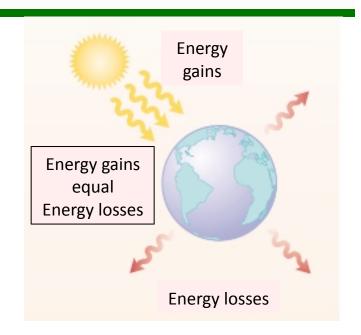
Hypothesis: Earth's temperature is a consequence of


- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Question: What fraction of solar radiation does the earth reflect? What hypothesis?

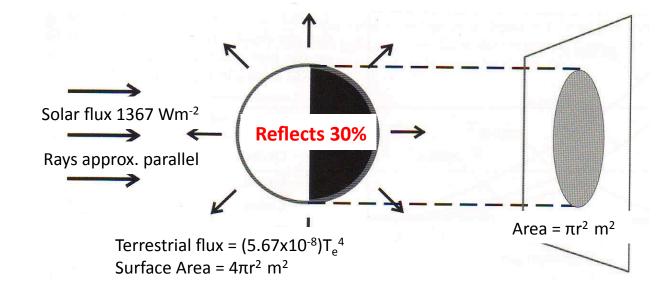
Examples:

- Fresh snow reflects 85%
- Sandy desert reflects 40%
- Grasslands reflect 18%
- Cities reflect 16%
- Ocean reflects 6%



Hypothesis: Earth's temperature is a consequence of

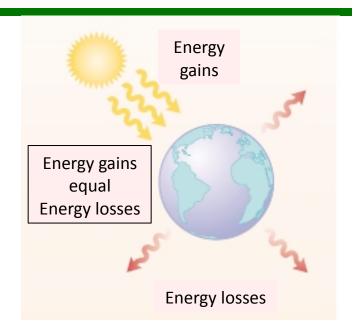
- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

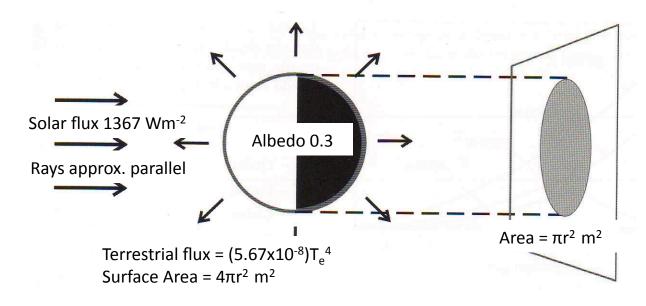

Question: What fraction of solar radiation does the earth reflect? What hypothesis?

Answer: Planetary average albedo 0.3 (hyp. 4)

Examples:

- Fresh snow reflects 85%
- Sandy desert reflects 40%
- Grasslands reflect 18%
- Cities reflect 16%
- Ocean reflects 6%

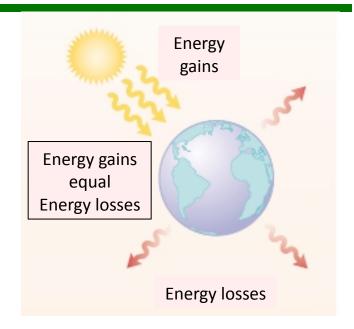


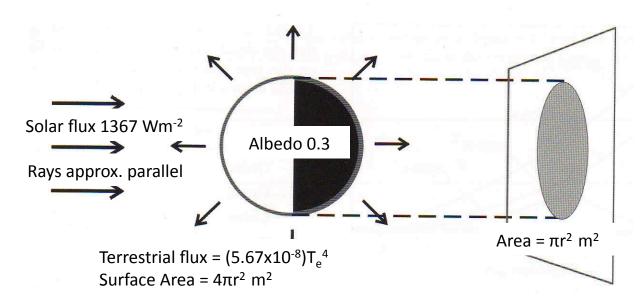


Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

OK! Now we understand the picture, Let's do energy balance...

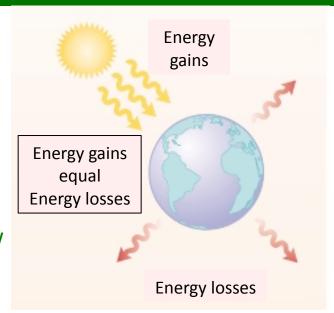


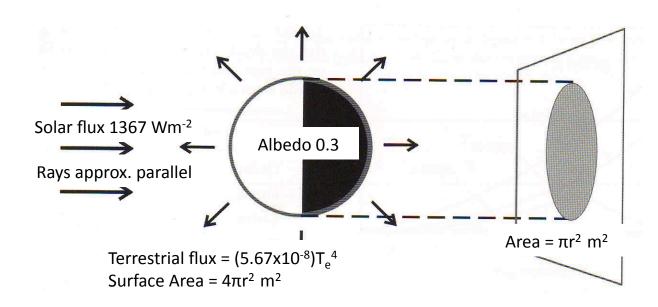

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = ???



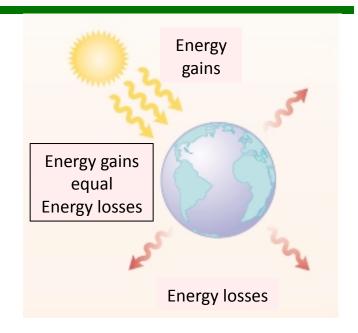

Hypothesis: Earth's temperature is a consequence of

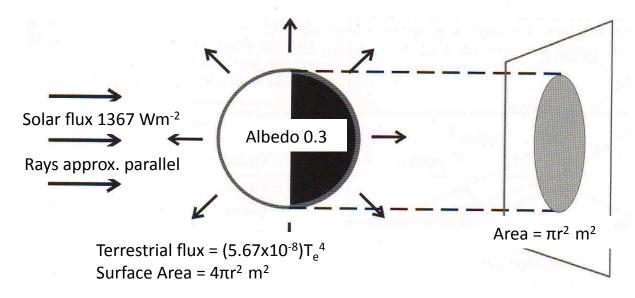
- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = 1367 Wm⁻² * $\pi r^2 m^2 = 1367 \pi r^2$ W

Hypothesis: Earth's temperature is a consequence of


- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

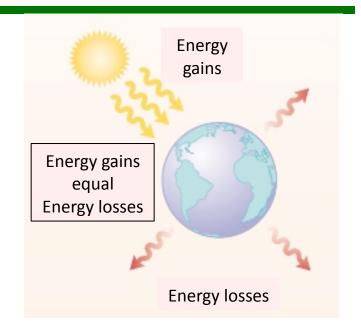

Energy Gain

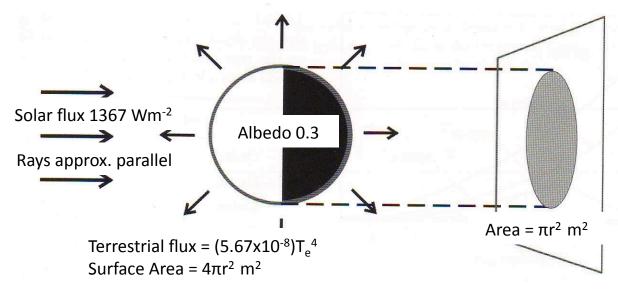
Solar flux * cross-sect area = $1367\pi r^2$ W

Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = ???

Hypothesis: Earth's temperature is a consequence of


- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)


Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

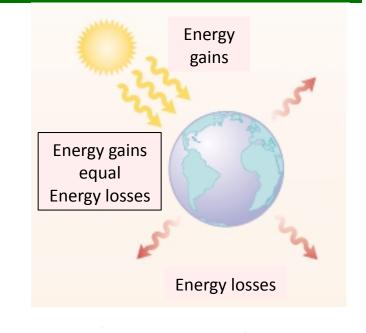
Energy loss by Terrestrial Radiation

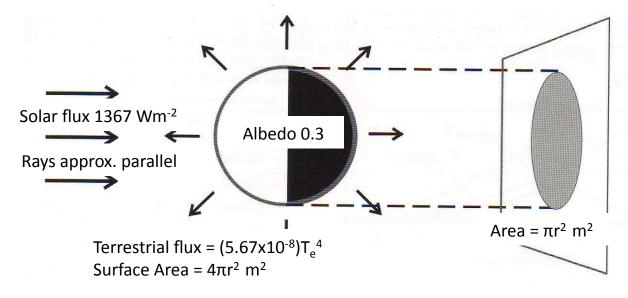
Terrestrial flux * surface area = $(5.67x10^{-8})T^4 4\pi r^2$ W

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain


Solar flux * cross-sect area = $1367\pi r^2$ W

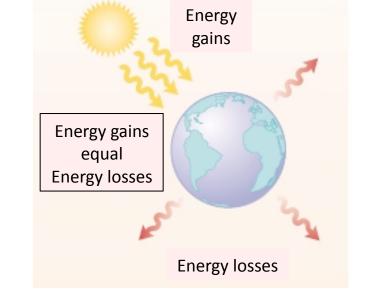

Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = ???

Hypothesis: Earth's temperature is a consequence of


- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

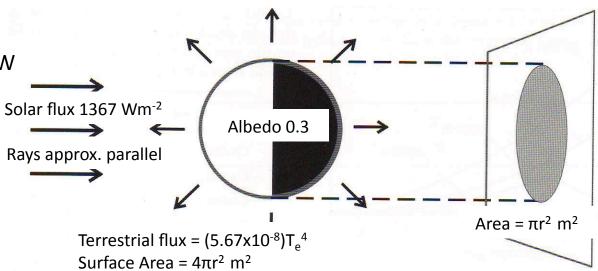
Energy loss by Terrestrial Radiation

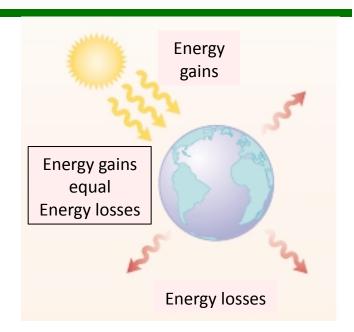
Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain


Solar flux * cross-sect area = $1367\pi r^2$ W


Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

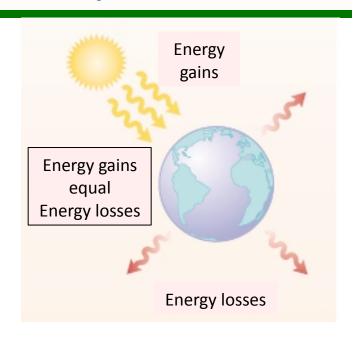
Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

Energy loss by Terrestrial Radiation


Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

Balance

 $1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$

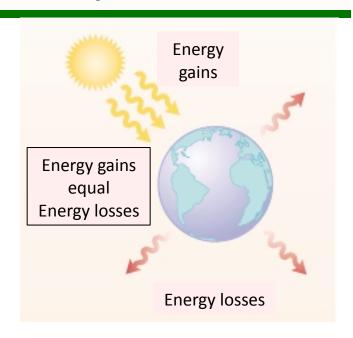
Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

Energy loss by Terrestrial Radiation


Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

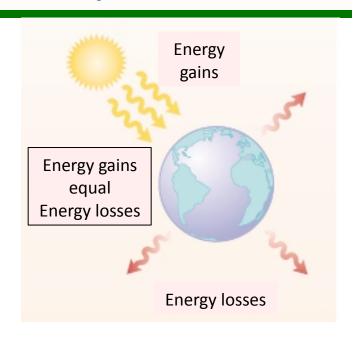
 $1367 = 410 + 4(5.67x10^{-8})T^4$

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W


Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

 $1367 = 410 + 4(5.67x10^{-8})T^4$
 $(5.67x10^{-8})T^4 = 239$

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

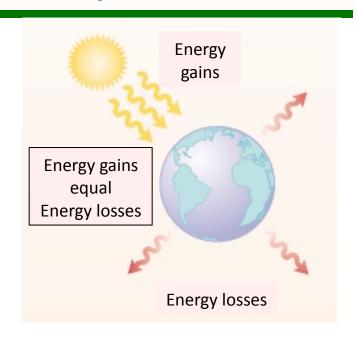
Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo


Reflected solar radiation = $410\pi r^2$ W

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67x10^{-8})T^4$$

$$(5.67x10^{-8})T^4 = 239$$

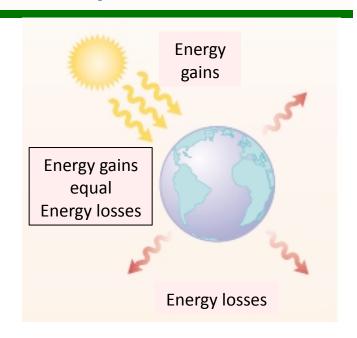
$$T = 239^{(1/4)}(5.67x10^{-8})^{(-1/4)}$$

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W


Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

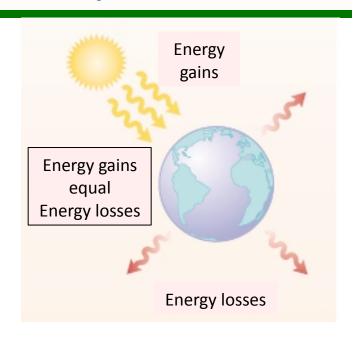
 $1367 = 410 + 4(5.67x10^{-8})T^4$
 $(5.67x10^{-8})T^4 = 239$
 $T = 239^{(1/4)}(5.67x10^{-8})^{(-1/4)}$
 $T = 3.93 \times 64.8$

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W


Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

 $1367 = 410 + 4(5.67x10^{-8})T^4$
 $(5.67x10^{-8})T^4 = 239$
 $T = 239^{(1/4)}(5.67x10^{-8})^{(-1/4)}$
 $T = 3.93 \times 64.8$

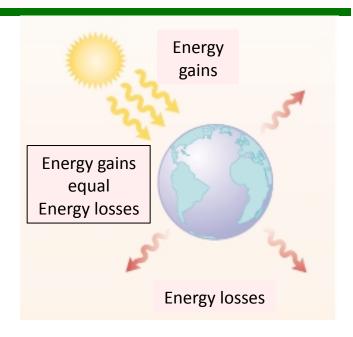
$$T = 3.93 \times 64.8 = 255K$$

Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W


Energy loss by Terrestrial Radiation

Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

 $1367 = 410 + 4(5.67x10^{-8})T^4$
 $(5.67x10^{-8})T^4 = 239$
 $T = 239^{(1/4)}(5.67x10^{-8})^{(-1/4)}$
 $T = 3.93 \times 64.8$

$$T = 3.93 \times 64.8 = 255K = ???°C$$

(Remember 273K = 0°C)

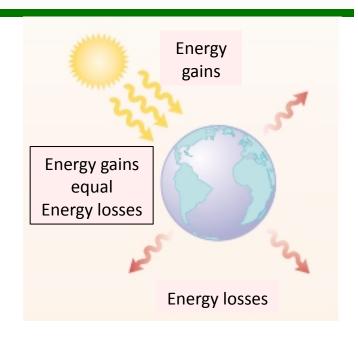
Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

Energy loss by Terrestrial Radiation


Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

 $1367 = 410 + 4(5.67x10^{-8})T^4$
 $(5.67x10^{-8})T^4 = 239$
 $T = 239^{(1/4)}(5.67x10^{-8})^{(-1/4)}$
 $T = 3.93 \times 64.8$

So.....

 $T = 3.93 \times 64.8 = 255K = -18$ °C

Does that sound about right?

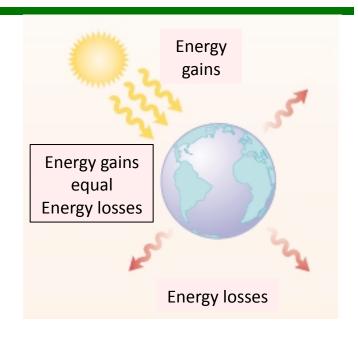
Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

Energy loss by Terrestrial Radiation


Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

 $1367 = 410 + 4(5.67x10^{-8})T^4$
 $(5.67x10^{-8})T^4 = 239$
 $T = 239^{(1/4)}(5.67x10^{-8})^{(-1/4)}$
 $T = 3.93 \times 64.8$

So.....

 $T = 3.93 \times 64.8 = 255K = -18$ °C

Does that sound about right?
Too Cold – Snowball Earth!

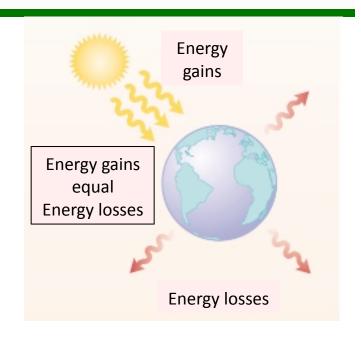
Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Energy Gain

Solar flux * cross-sect area = $1367\pi r^2$ W

Energy loss by Terrestrial Radiation


Terrestrial flux * surface area = (5.67×10^{-8}) T⁴ 4π r² W

Energy loss by Albedo

Reflected solar radiation = $410\pi r^2$ W

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67x10^{-8})T^4 4\pi r^2$$

 $1367 = 410 + 4(5.67x10^{-8})T^4$
 $(5.67x10^{-8})T^4 = 239$
 $T = 239^{(1/4)}(5.67x10^{-8})^{(-1/4)}$
 $T = 3.93 \times 64.8$

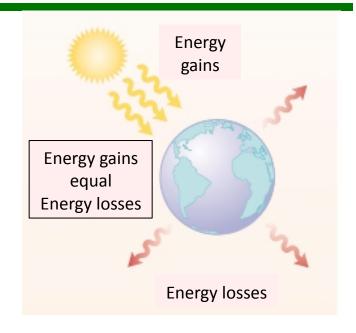
So.....

 $T = 3.93 \times 64.8 = 255K = -18$ °C

Does that sound about right?

Too Cold – Snowball Earth!

Recall: our current global average surface temp is 15°C


Hypothesis: Earth's temperature is a consequence of

- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Conclusions:

With these hypotheses, surface temp is 33°C too low. We need to include atmosphere to correct this.

255K is a good estimate for the top of the atmosphere, Which does satisfy the hypotheses more closely.

So.....

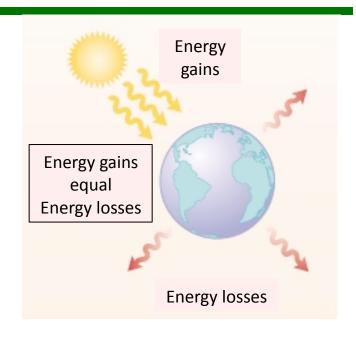
 $T = 3.93 \times 64.8 = 255K = -18$ °C

Does that sound about right?

Too Cold – Snowball Earth!

Recall: our current global average surface temp is 15°C

Hypothesis: Earth's temperature is a consequence of


- 1. Blackbody radiation
- 2. Distance from Sun
- 3. Size
- 4. Albedo (reflectivity)

Conclusions:

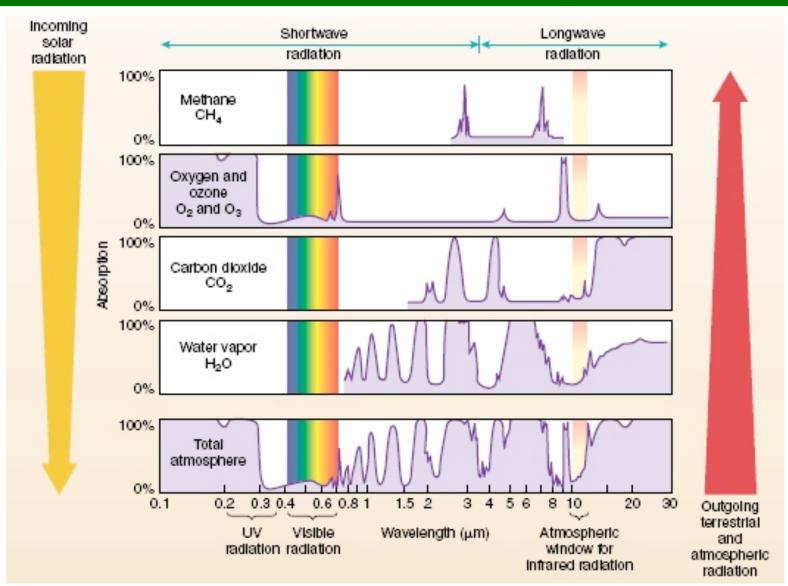
With these hypotheses, surface temp is 33°C too low. We need to include atmosphere to correct this.

255K is a good estimate for the top of the atmosphere, Which does satisfy the hypotheses more closely.

Need new hypotheses about absorption of solar and terrestrial radiation by the atmosphere.

So.....

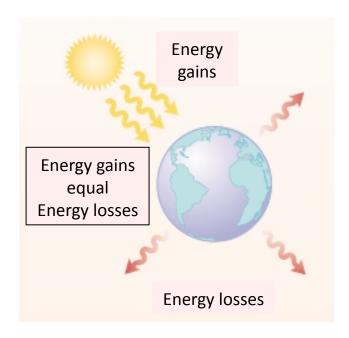
 $T = 3.93 \times 64.8 = 255K = -18$ °C


Does that sound about right?

Too Cold – Snowball Earth!

Recall: our current global average surface temp is 15°C

Greenhouse Gases (GHGs) Atmospheric Absorption Spectrum



Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

Solar flux * cross-sect area = $1367\pi r^2$

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

Solar flux * cross-sect area = $1367\pi r^2$

Energy loss by Albedo – unchanged

Reflected solar radiation = $410\pi r^2$ W

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

Solar flux * cross-sect area = $1367\pi r^2$

Energy loss by Albedo – unchanged

Reflected solar radiation = $410\pi r^2$ W

Energy loss by Terrestrial Radiation - reduced! Let's use parameter α to reduce it.

 α (Terrestrial flux * surface area) = α (5.67x10⁻⁸)T⁴ 4 π r²

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

Solar flux * cross-sect area = $1367\pi r^2$

Energy loss by Albedo – unchanged

Reflected solar radiation = $410\pi r^2$ W

Energy loss by Terrestrial Radiation - reduced! Let's use parameter α to reduce it. α (Terrestrial flux * surface area) = α (5.67x10⁻⁸)T⁴ 4π r²

New Balance

$$1367\pi r^2 = 410\pi r^2 + \alpha (5.67 \times 10^{-8}) T^4 4\pi r^2$$

$$T = \frac{255}{\alpha^{1/4}}$$

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

New Energy Balance:
$$T = \frac{255}{\alpha^{1/4}}$$

Case α =1: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

T = 255 K = -18°C, as before

Snowball Earth! We need some GHGs to avoid this.

As greenhouse gases increase: α does what??? Increase or decrease?

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

New Energy Balance:
$$T = \frac{255}{\alpha^{1/4}}$$

Case α =1: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

T = 255 K = -18°C, as before

Snowball Earth! We need some GHGs to avoid this.

As greenhouse gases increase: α decreases

So predicted temperature T does what ??? Increase or decrease?

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

New Energy Balance:
$$T = \frac{255}{\alpha^{1/4}}$$

Case α =1: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

$$T = 255 K = -18$$
°C, as before

Snowball Earth! We need some GHGs to avoid this.

As greenhouse gases increase: α decreases

So predicted temperature Tincreases

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

New Energy Balance: $T = \frac{255}{\alpha^{1/4}}$

Case α =1: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

T = 255 K = -18°C, as before

Snowball Earth! We need some GHGs to avoid this.

As greenhouse gases increase: α decreases

So predicted temperature Tincreases

Conclusion

As greenhouse gases keep increasing, temperature keeps increasing...

Hypotheses: Earth's temperature is a consequence of

- 1. Radiation, distance from sun, albedo
- 2. Atmosphere transparent to solar radiation
- 3. Atmosphere absorbs some terrestrial radiation

New Energy Balance:
$$T = \frac{255}{\alpha^{1/4}}$$

Case α =1: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

$$T = 255 K = -18$$
°C, as before

Snowball Earth! We need some GHGs to avoid this.

As greenhouse gases increase: α decreases

So predicted temperature Tincreases

Conclusion

As greenhouse gases keep increasing, temperature keeps increasing...

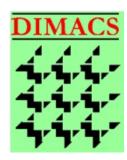
To Learn More...

www.mathclimate.org

Mathematics and Climate Research Network – Education pages

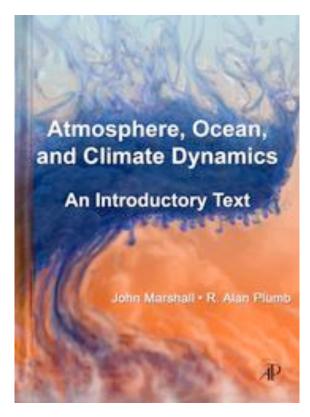
www.mpe2013.org

Mathematics of Planet Earth 2013 – Education pages

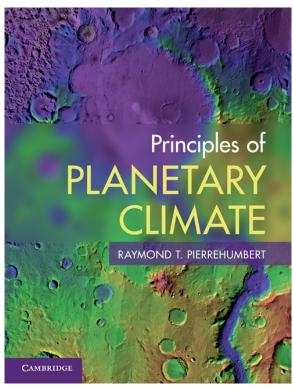


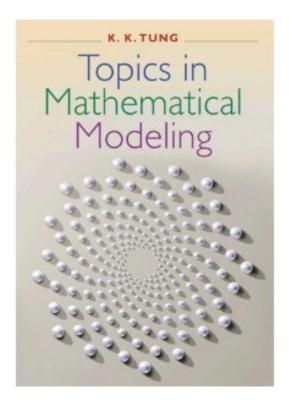
www.mathaware.org

Math Awareness Month 2013 – Mathematics and Sustainability


www.dimacs.rutgers.edu/MPE

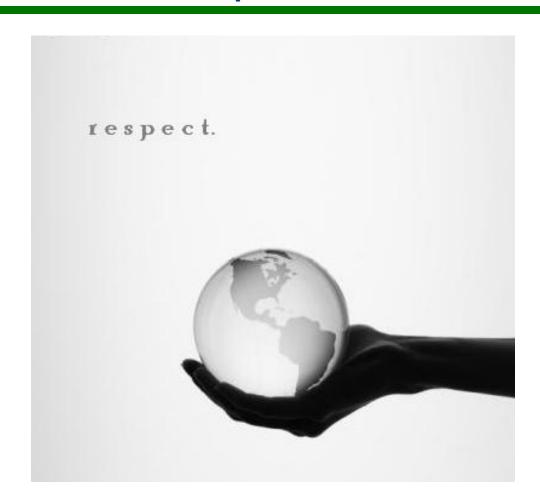
DIMACS Mathematics and Sustainability Curriculum Modules




And More...

John Marshall and Alan Plumb (MIT)

Ray Pierrehumbert


Ka-Kit Tung

Forthcoming text on Mathematics and Climate, Hans Kaper and Hans Engler. SIAM

Math and Global Temperature

THANK YOU!

Thanks to: many friends & colleagues

