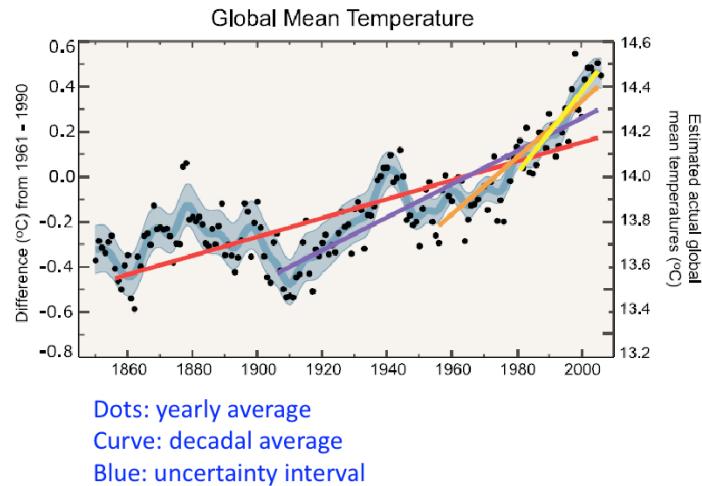


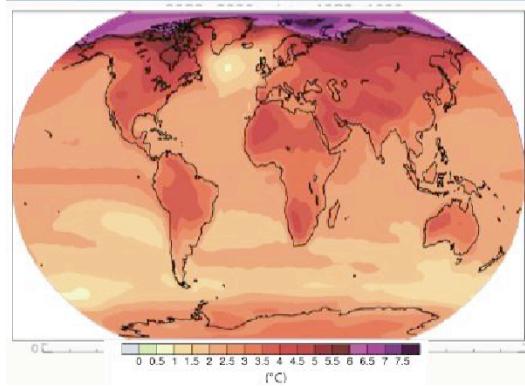
Math and Global Temperature

Mary Lou Zeeman
Bowdoin College
&
Math and Climate
Research Network

Thanks to:
**many friends
& colleagues**


Bowdoin

This talk was originally prepared by Mary Lou Zeeman for a lecture to the Coastal Studies for Girls residential high school in Freeport, Maine, in 2010. It has been modified slightly since then but remains the same in spirit. Feel free to use it. Please make sure to credit sources of information and images.


Evidence of a Changing Climate

Intergovernmental Panel on Climate Change (IPCC):
Warming is “unequivocal”

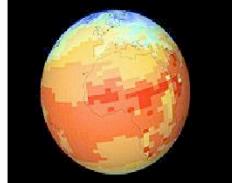
We're going to focus on global mean temperature
(mean over planet and over a year)

Why do we try to predict?

Warming is NOT uniform

IPCC

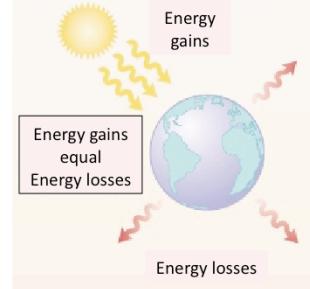
Need to make adaptation policy decisions to protect areas of vulnerability



Why use Mathematical Models?

1

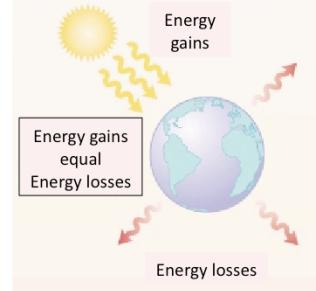
many



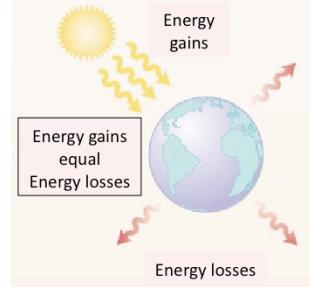
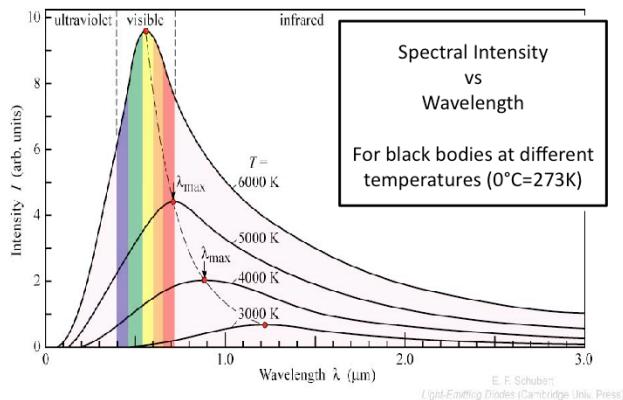
C. Jones

We've only got one real experiment...

Simplest Energy Balance Model


CIMSS/ U Wisc

Simple concept that underlies a family of models



Simplest Energy Balance Model

PLAN: Use this model to understand the role of greenhouse gases in regulating our temperature

Understanding Radiated Energy

Black Body Radiation - Planck

Sun: ~6000K, emits mainly in ultraviolet (UV) and visible spectrum (shortwave)

Earth: ~300K, emits mainly in infrared (IR) spectrum (longwave)

Total energy flux over all wavelengths for temp T is $\sigma T^4 = (5.67 \times 10^{-8}) T^4$ -- Stefan-Boltzmann

A “Black Body” absorbs everything at all wavelengths

It radiates energy according to it’s temperature (discovered by Planck)

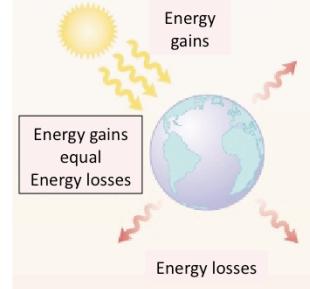
Shorter wavelength has higher energy

Earth is an order of magnitude cooler than any of the graphs shown

So Earth radiates energy at much longer wavelengths than sun

Degrees K and C are the same size

Flux is energy/unit area


Not a coincidence that sun emits in our visible spectrum.

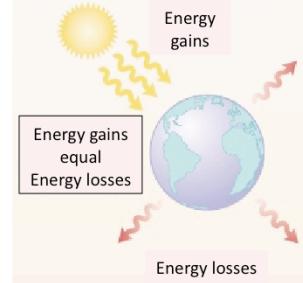
A consequence of evolution that our vision has evolved to optimize use of available spectrum

Earth's Average Temperature


Question: What is Earth's average global annual temperature T ?
What do you think?

Earth's Average Temperature

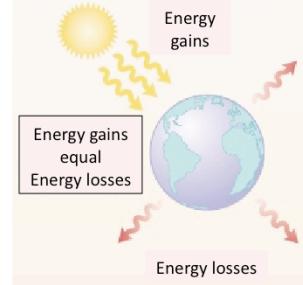
Question: What is Earth's average global annual temperature T ?
What do you think?
Answer: 15°C (59°F)



Earth's Average Temperature

Question: What is Earth's average global annual temperature T_e ?
What do you think?
Answer: 15°C (59°F)

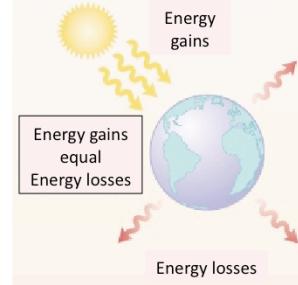
Question: Why? What controls it?



Earth's Average Temperature

Question: What is Earth's average global annual temperature T_e ?
What do you think?
Answer: 15°C (59°F)

Question: Why? What controls it?
Answer: Lots of things!


Earth's Average Temperature

Question: What is Earth's average global annual temperature T_e ?
What do you think?

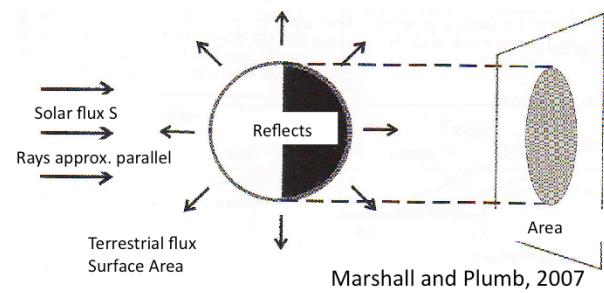
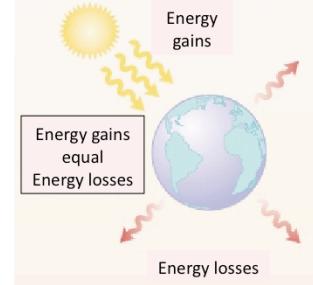
Answer: 15°C (59°F)

Question: Why? What controls it?

Answer: Lots of things!

Let's use math to test this hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

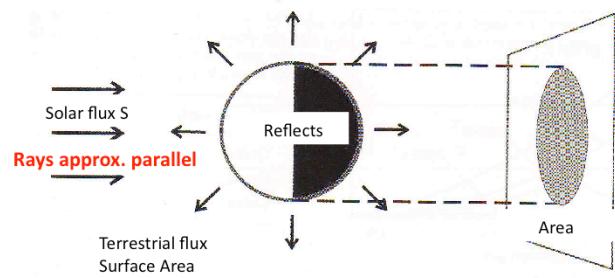
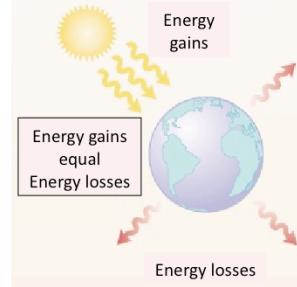


So we pretend the atmosphere is transparent to radiation: "no atmosphere"

Nice example of using mathematical models for hypothesis testing
ATMOSPHERE TRANSPARENT to radiation means no greenhouse gases

Energy Balance, No Atmosphere

- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

Let's relate diagram carefully to each hypothesis

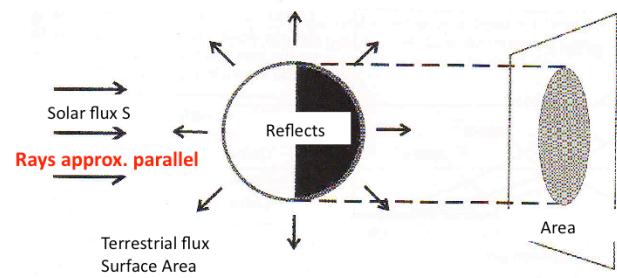
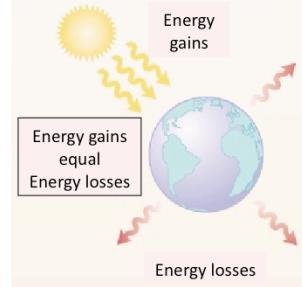



Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: Why are the rays from the sun approx. parallel? Which hypothesis?

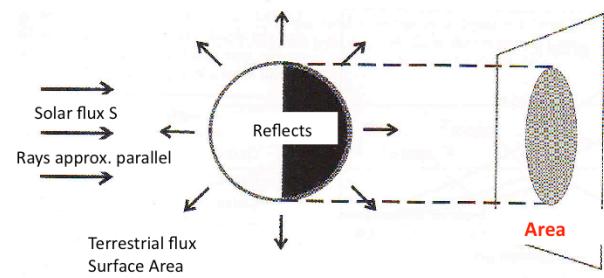
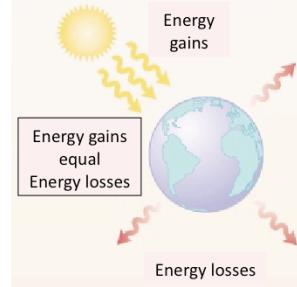


Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: Why are the rays from the sun approx. parallel? Which hypothesis?

Answer: Sun is so far away (hypothesis 2)

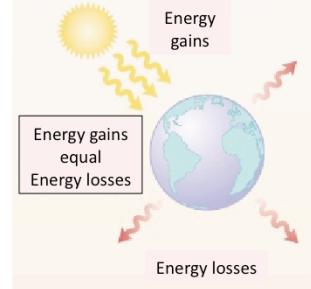



Energy Balance, No Atmosphere

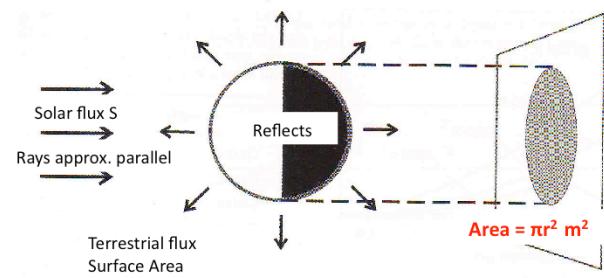
Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: What's the cross sectional area of the Earth (radius r)? Which hypothesis?



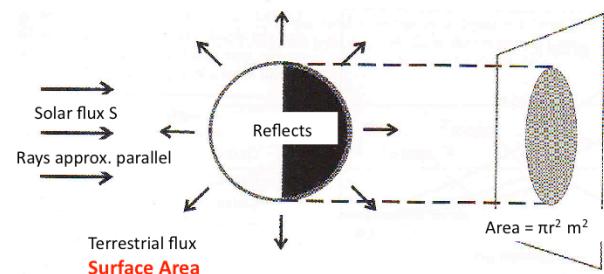
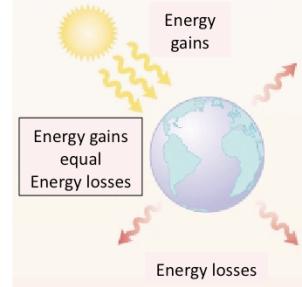
Energy Balance, No Atmosphere


Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: What's the cross sectional area of the Earth (radius r)? Which hypothesis?

Answer: Area = πr^2 m² (hypothesis 3)

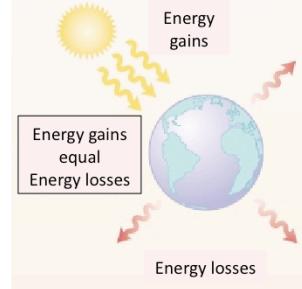



Energy Balance, No Atmosphere

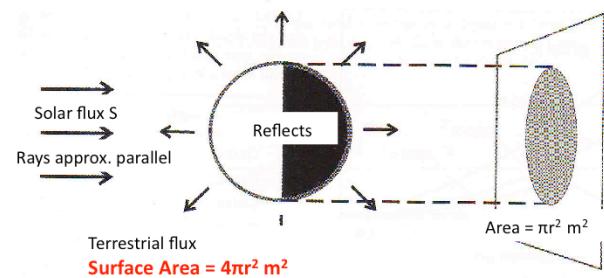
Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: What's the surface area of the Earth (radius r)? Which hypothesis?



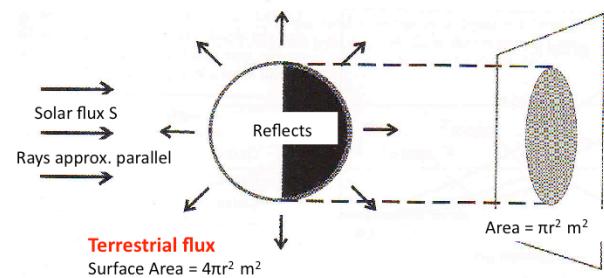
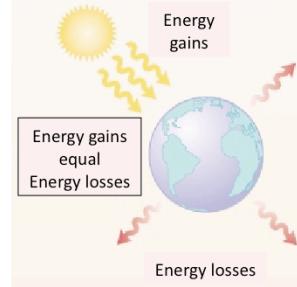
Energy Balance, No Atmosphere


Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: What's the surface area of the Earth (radius r)? Which hypothesis?

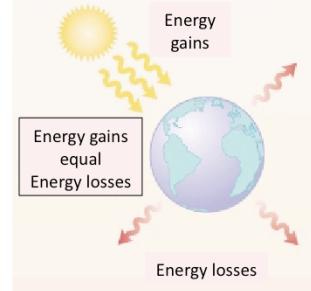
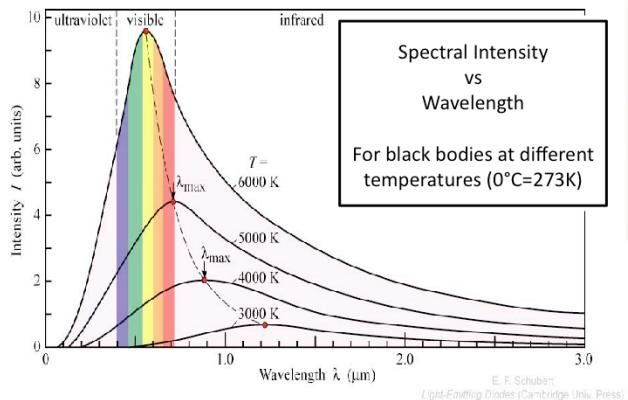
Answer: Surface Area = $4\pi r^2$ (hypothesis 3)

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)



Question: What's the terrestrial flux? Which hypothesis?

This one is not so obvious – do you remember the formula?

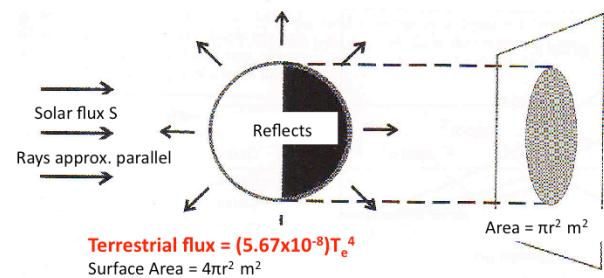
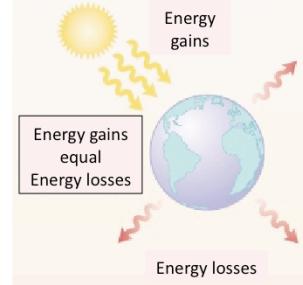
Figuring Out Terrestrial Flux

Black Body Radiation - Planck

Sun: ~6000K, emits mainly in ultraviolet (UV) and visible spectrum (shortwave)
 Earth: ~300K, emits mainly in infrared (IR) spectrum (longwave)

Total energy flux over all wavelengths for temp T is $\sigma T^4 = (5.67 \times 10^{-8}) T^4$ -- Stefan-Boltzmann

We are going to use this to find an equation for T

Energy Balance, No Atmosphere

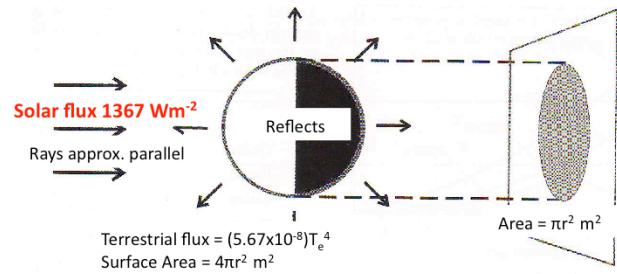
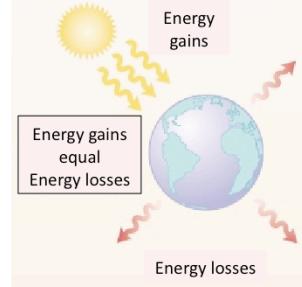
- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

Question: What's the terrestrial flux? Which hypothesis?

Answer: Terrestrial flux = $(5.67 \times 10^{-8})T^4 \text{ W m}^{-2}$ (hyp. 1)

T is global annual average temperature of the earth

We already know it's 15 degrees because we've measured it, but we're going to build model equations to see what temp. these hypotheses predict.



Energy Balance, No Atmosphere

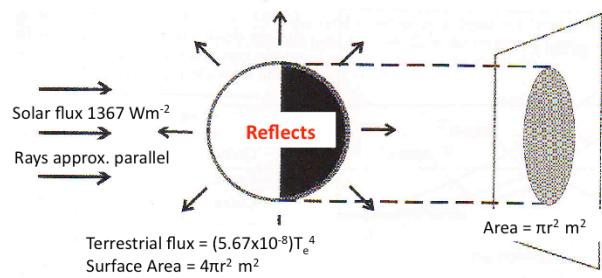
Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: What's the Solar flux? Which hypothesis?

Answer: Solar flux $S = 1367 \text{ Wm}^{-2}$ (hypothesis 1,2)

This is figured out using σT^4 for the sun, and the distance from the sun. Intensity drops like inverse square of distance.



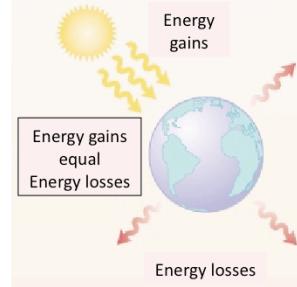
Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

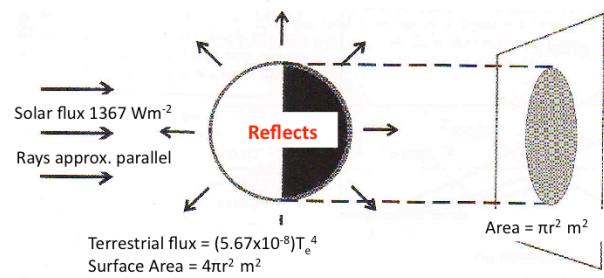
Question: What fraction of solar radiation does the earth reflect? What hypothesis?

What do you guess? On average over the whole planet?



Energy Balance, No Atmosphere

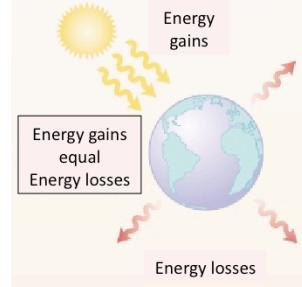
Hypothesis: Earth's temperature is a consequence of


1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Question: What fraction of solar radiation does the earth reflect? What hypothesis?

Examples:

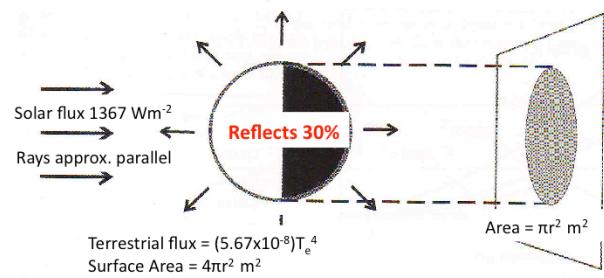
- Fresh snow reflects 85%
- Sandy desert reflects 40%
- Grasslands reflect 18%
- Cities reflect 16%
- Ocean reflects 6%


Albedo means the fraction that gets reflected

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

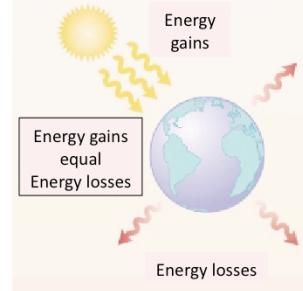


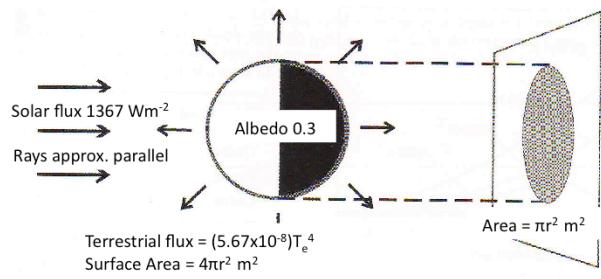
Question: What fraction of solar radiation does the earth reflect? What hypothesis?

Answer: Planetary average albedo 0.3 (hyp. 4)

Examples:

- Fresh snow reflects 85%
- Sandy desert reflects 40%
- Grasslands reflect 18%
- Cities reflect 16%
- Ocean reflects 6%

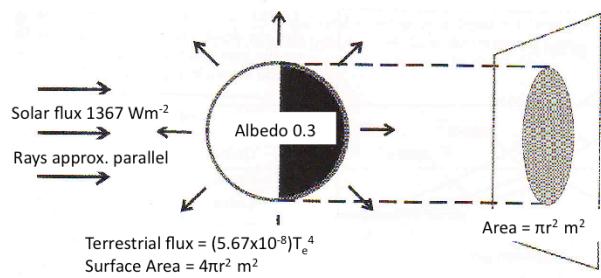
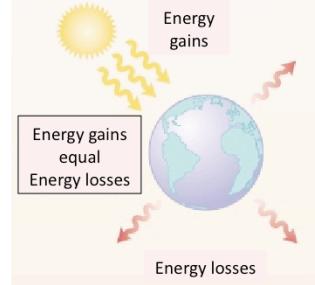

$$\begin{aligned} \text{Terrestrial flux} &= (5.67 \times 10^{-8}) T_e^4 \\ \text{Surface Area} &= 4\pi r^2 \text{ m}^2 \end{aligned}$$


Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

OK! Now we understand the picture,
Let's do energy balance...



Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

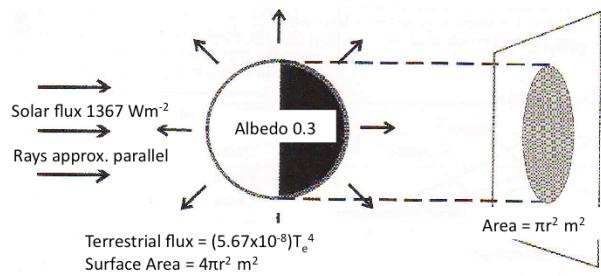
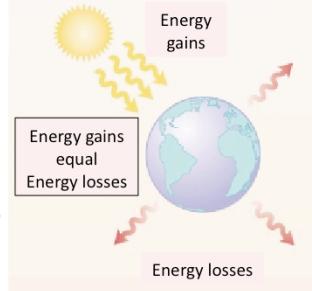
Energy Gain

Solar flux * cross-sect area = ???

This is how much solar flux the earth intercepts, in total.

Flux is energy/unit area

So energy = flux * area

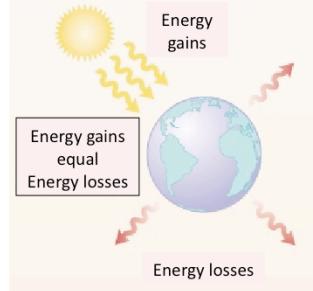


Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

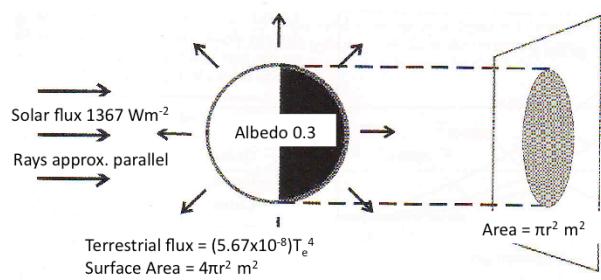
Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367 \text{ Wm}^{-2} * \pi r^2 \text{ m}^2 = 1367\pi r^2 \text{ W}$$


Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

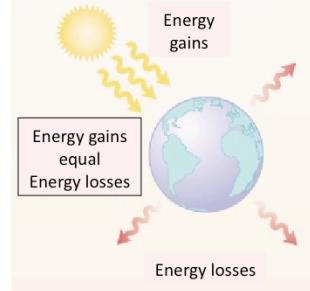
1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)


Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

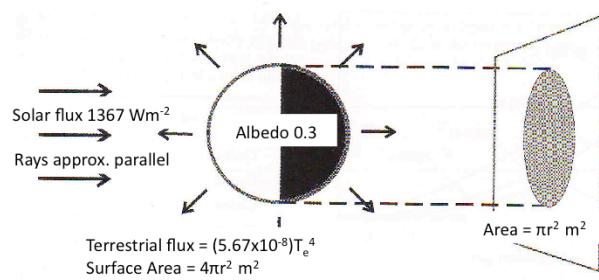
Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = ???$$



Energy Balance, No Atmosphere

- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

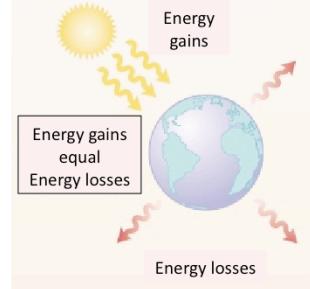

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8}) T^4 4\pi r^2 \text{ W}$$

Terrestrial flux given by Stefan-Bolzmann law of radiation from a black body at temperature T

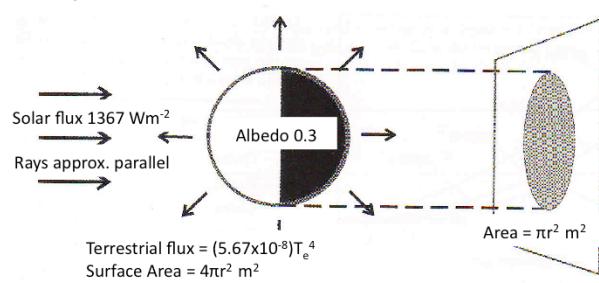


Energy Balance, No Atmosphere

- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

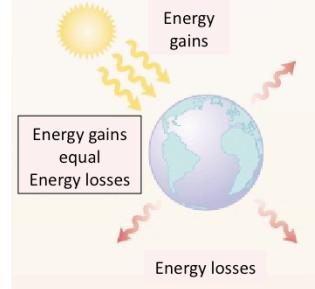


Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8}) T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

Reflected solar radiation = ???

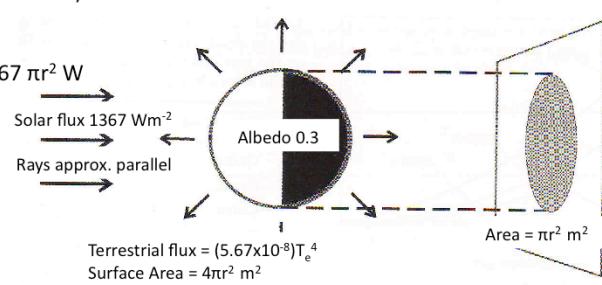

Albedo (reflectivity) * solar radiation arriving

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Energy Gain

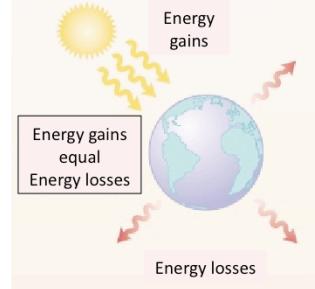

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8}) T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 0.3 \times 1367 \pi r^2 \text{ W}$$

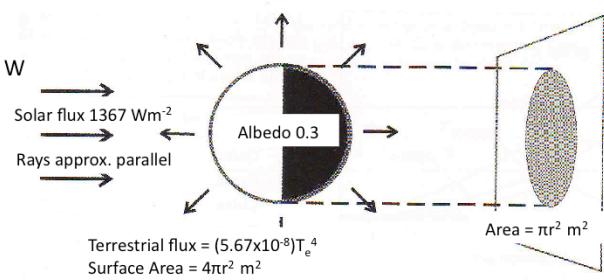


Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Energy Gain


$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8}) T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Energy Balance, No Atmosphere

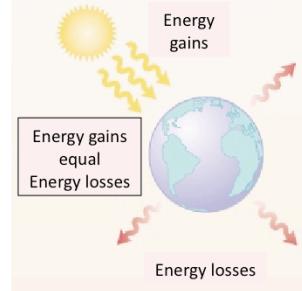
Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation


$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

Cancel πr^2 and solve for T

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

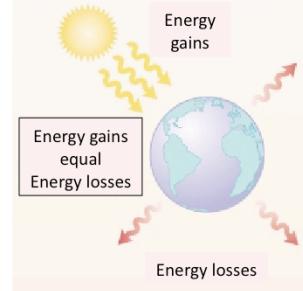
1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$


Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

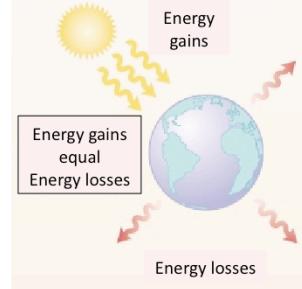
Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo


$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Energy Gain

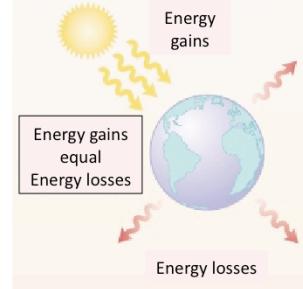
$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$


Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

$$T = 239^{(1/4)}(5.67 \times 10^{-8})^{(-1/4)}$$

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

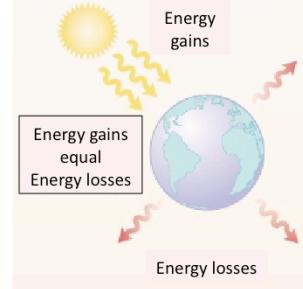
Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance


$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

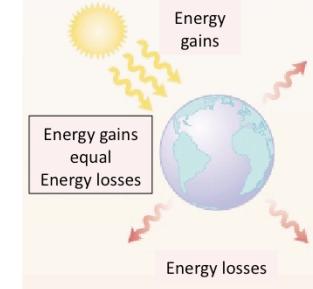
$$T = 239^{(1/4)}(5.67 \times 10^{-8})^{(-1/4)}$$

$$T = 3.93 \times 64.8$$

Energy Balance, No Atmosphere

- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

Energy Gain


$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

So.....

$$T = 3.93 \times 64.8 = 255K$$

Balance

$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

$$T = 239^{(1/4)}(5.67 \times 10^{-8})^{(-1/4)}$$

$$T = 3.93 \times 64.8$$

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

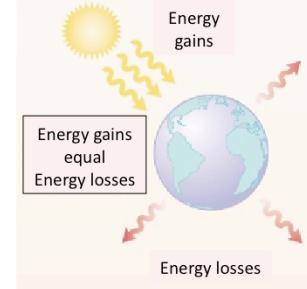
Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance


$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

$$T = 239^{(1/4)}(5.67 \times 10^{-8})^{(-1/4)}$$

$$T = 3.93 \times 64.8$$

So.....

$$T = 3.93 \times 64.8 = 255 \text{ K} = ???^\circ \text{C}$$

(Remember 273K = 0°C)

Energy Balance, No Atmosphere

- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

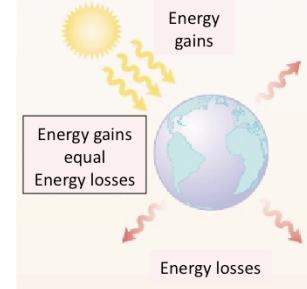
Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance


$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

$$T = 239^{(1/4)}(5.67 \times 10^{-8})^{(-1/4)}$$

$$T = 3.93 \times 64.8$$

So.....

$$T = 3.93 \times 64.8 = 255K = -18^{\circ}C$$

Does that sound about right?

Energy Balance, No Atmosphere

- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

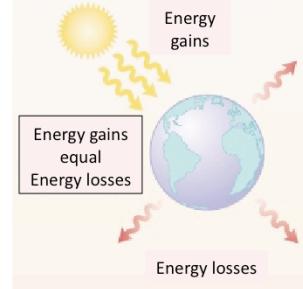
Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance


$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

$$T = 239^{(1/4)}(5.67 \times 10^{-8})^{(-1/4)}$$

$$T = 3.93 \times 64.8$$

So.....

$$T = 3.93 \times 64.8 = 255 \text{ K} = -18^\circ\text{C}$$

Does that sound about right?

Too Cold – Snowball Earth!

Energy Balance, No Atmosphere

- Hypothesis:** Earth's temperature is a consequence of
1. Blackbody radiation
 2. Distance from Sun
 3. Size
 4. Albedo (reflectivity)

Energy Gain

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2 \text{ W}$$

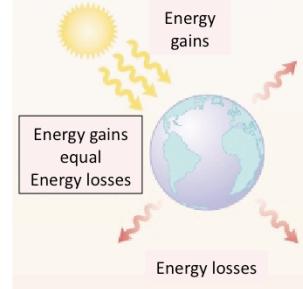
Energy loss by Terrestrial Radiation

$$\text{Terrestrial flux} * \text{surface area} = (5.67 \times 10^{-8})T^4 4\pi r^2 \text{ W}$$

Energy loss by Albedo

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Balance


$$1367\pi r^2 = 410\pi r^2 + (5.67 \times 10^{-8})T^4 4\pi r^2$$

$$1367 = 410 + 4(5.67 \times 10^{-8})T^4$$

$$(5.67 \times 10^{-8})T^4 = 239$$

$$T = 239^{(1/4)}(5.67 \times 10^{-8})^{(-1/4)}$$

$$T = 3.93 \times 64.8$$

So.....

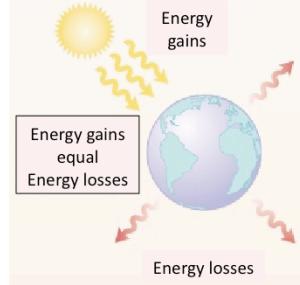
$$T = 3.93 \times 64.8 = 255K = -18^{\circ}C$$

Does that sound about right?

Too Cold – Snowball Earth!

Recall: our current global average surface temp is 15°C

Energy Balance, No Atmosphere


Hypothesis: Earth's temperature is a consequence of

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Conclusions:

With these hypotheses, surface temp is 33°C too low.
We need to include atmosphere to correct this.

255K is a good estimate for the top of the atmosphere,
Which does satisfy the hypotheses more closely.

So.....

$$T = 3.93 \times 64.8 = 255K = -18^{\circ}C$$

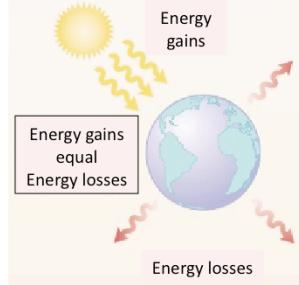
Does that sound about right?

Too Cold – Snowball Earth!

Recall: our current global average
surface temp is 15°C

Energy Balance, No Atmosphere

Hypothesis: Earth's temperature is a consequence of

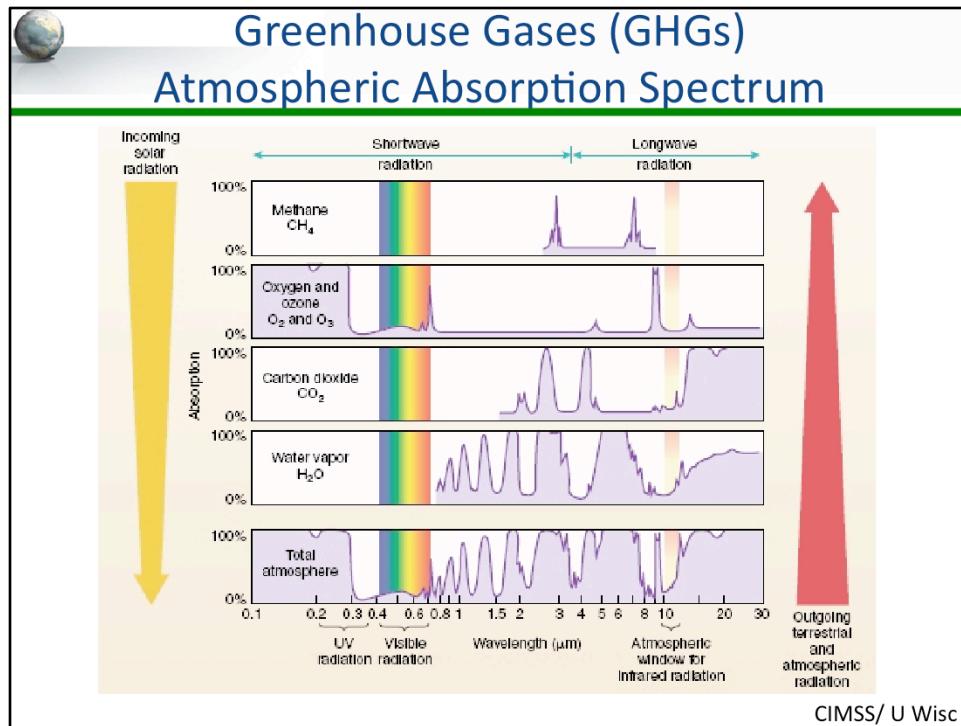

1. Blackbody radiation
2. Distance from Sun
3. Size
4. Albedo (reflectivity)

Conclusions:

With these hypotheses, surface temp is 33°C too low.
We need to include atmosphere to correct this.

255K is a good estimate for the top of the atmosphere,
Which does satisfy the hypotheses more closely.

Need new hypotheses about absorption of solar and
terrestrial radiation by the atmosphere.


So.....

$$T = 3.93 \times 64.8 = 255K = -18^{\circ}C$$

Does that sound about right?

Too Cold – Snowball Earth!

Recall: our current global average
surface temp is 15°C

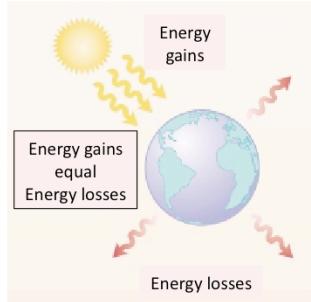
CIMSS/ U Wisc

Atmosphere is not transparent.

Figure shows absorption spectrum due to major greenhouse gas constituents of the atmosphere

Shortwave range: solar radiation coming in – atmosphere is mainly transparent to that

Longwave (IR) range: terrestrial radiation leaving – atmosphere is partially opaque to IR



Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

Solar flux * cross-sect area = $1367\pi r^2$

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

Solar flux * cross-sect area = $1367\pi r^2$

Energy loss by Albedo – unchanged

Reflected solar radiation = $410\pi r^2$ W

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2$$

Energy loss by Albedo – unchanged

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation - reduced! Let's use parameter α to reduce it.

$$\alpha(\text{Terrestrial flux} * \text{surface area}) = \alpha(5.67 \times 10^{-8} T^4 4\pi r^2)$$

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

How do these assumptions affect our energy balance computation?

Energy Gain - unchanged by new assumptions

$$\text{Solar flux} * \text{cross-sect area} = 1367\pi r^2$$

Energy loss by Albedo – unchanged

$$\text{Reflected solar radiation} = 410\pi r^2 \text{ W}$$

Energy loss by Terrestrial Radiation - reduced! Let's use parameter α to reduce it.

$$\alpha(\text{Terrestrial flux} * \text{surface area}) = \alpha(5.67 \times 10^{-8} T^4 4\pi r^2)$$

New Balance

$$1367\pi r^2 = 410\pi r^2 + \alpha(5.67 \times 10^{-8} T^4 4\pi r^2)$$

$$T = \frac{255}{\alpha^{1/4}}$$

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

New Energy Balance: $T = \frac{255}{\alpha^{1/4}}$

Case $\alpha=1$: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

$T = 255 \text{ K} = -18^\circ\text{C}$, as before

Snowball Earth! We need *some* GHGs to avoid this.

As greenhouse gases increase: α does what??? Increase or decrease?

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

New Energy Balance: $T = \frac{255}{\alpha^{1/4}}$

Case $\alpha=1$: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

$T = 255 \text{ K} = -18^\circ\text{C}$, as before

Snowball Earth! We need *some* GHGs to avoid this.

As greenhouse gases increase: α decreases

So predicted temperature T does what ??? Increase or decrease?

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

New Energy Balance: $T = \frac{255}{\alpha^{1/4}}$

Case $\alpha=1$: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

$T = 255 \text{ K} = -18^\circ\text{C}$, as before

Snowball Earth! We need *some* GHGs to avoid this.

As greenhouse gases increase: α decreases

So predicted temperature T increases

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

New Energy Balance: $T = \frac{255}{\alpha^{1/4}}$

Case $\alpha=1$: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

$T = 255 \text{ K} = -18^\circ\text{C}$, as before

Snowball Earth! We need *some* GHGs to avoid this.

As greenhouse gases increase: α decreases

So predicted temperature T increases

Conclusion

As greenhouse gases keep increasing, temperature keeps increasing...

Energy Balance, GHGs in Atmosphere

Hypotheses: Earth's temperature is a consequence of

1. Radiation, distance from sun, albedo
2. Atmosphere transparent to solar radiation
3. Atmosphere absorbs some terrestrial radiation

New Energy Balance: $T = \frac{255}{\alpha^{1/4}}$

Case $\alpha=1$: Corresponds to no greenhouse gases

Atmosphere is transparent to terr. radiation, &

$T = 255 \text{ K} = -18^\circ\text{C}$, as before

Snowball Earth! We need *some* GHGs to avoid this.

Want to learn
more???

As greenhouse gases increase: α decreases

So predicted temperature T increases

Conclusion

As greenhouse gases keep increasing, temperature keeps increasing...

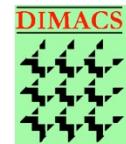
To Learn More...

www.mathclimate.org

Mathematics and Climate Research Network – Education pages

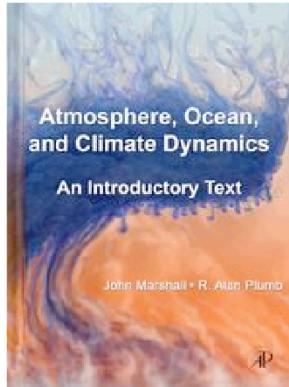
www.mpe2013.org

Mathematics of Planet Earth 2013 – Education pages

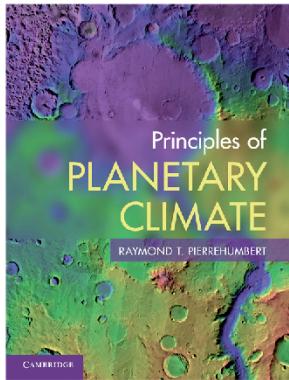


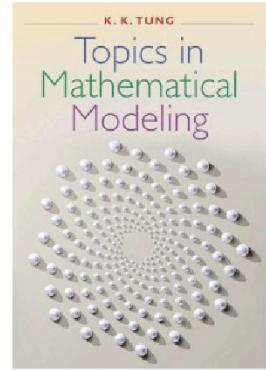
www.mathaware.org

Math Awareness Month 2013 – Mathematics and Sustainability


www.dimacs.rutgers.edu/MPE

DIMACS Mathematics and Sustainability Curriculum Modules




And More...

John Marshall and
Alan Plumb (MIT)

Ray Pierrehumbert

Ka-Kit Tung

Forthcoming text on Mathematics and Climate, Hans Kaper and Hans Engler. SIAM

Math and Global Temperature

THANK
YOU!

Thanks to:
many friends
& colleagues

& Bowdoin