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Keeping our nation safe from natural, accidental, and intentional disasters requires extensive plan-
ning. Integral components of the country that need to be protected include the population, economy, 
and infrastructure. Failures in any of these three highly interconnected systems can have catastrophic 
effects. Because humans are central to all of these components, protecting the population from conta-
gious diseases and devastating events is crucial.

With this goal in mind, mathematicians and computer scientists at Los Alamos National Laboratory 
created a synthetic population of more than 280 million individuals to represent the entire 
population of the United States (Stroud 2007). We use this population to model the move-
ment of people through a representative timeframe to understand how people interact and 
spread transmittable diseases, such as influenza. To represent social interactions, we connect 
people as they cross paths at the same place and time. For example, George teaches at a 
school from 8 to 9 AM, travels by bus from 9–10 AM, and eats at a restaurant from 10 AM 
to noon. Similarly, the driver of George’s bus works from 8 AM to noon, with passengers 
including George from 9–10 AM, and a business executive from 10–11 AM. For any instant 
in time, we can look at which people share locations. George shares locations with another 
teacher at the school at 8:30 AM, and with the bus driver from 9–10 AM. The bus driver 
then shares the bus with the business executive, who goes to his office and works with other 
people. Combining these social interactions creates a time-dependent, person-to-person 
social network (See Figure 1). Studying that network can reveal how a disease that requires 
physical proximity for transmission could be spread.

Generally, a college student is unlikely to be at a senior citizens center and elementary 
school children are unlikely to be at work in an office. To generate the complex interac-
tions within the population, we need a realistic representation of individual demographics. 
We use U.S. census data for this purpose. For privacy reasons, the Census Bureau does not 
release its full records; the only way to obtain a realistic population is to create a synthetic 
one that identically matches all the available information. The Census Bureau does release 
a 5% sample of its complete records attached to small study areas, along with marginal 
distributions (e.g., the total value of one or more demographic characteristics) of demo-
graphics by block groups.  Using a statistical procedure called iterative proportional fitting 
(see Appendix), we create a synthetic population from the census sample data that matches the United 
States population. The result is a set of households and individuals, geographically distributed with 
correct demographics, that is statistically indistinguishable from the real population. In each block 
group, the synthetic population matches the actual population in several statistical measures: number 
of residents, number of households, ages of the household’s residents, household size and membership 
distribution, household income distribution, number of workers, and number of vehicles.

In the next step, we generate a set of activities, such as shopping, going to school, working, 
and college, that fits people within specific demographics and home locations.  We assign the 
appropriate activities to every person in the synthetic population. For data, we turn to large 
metropolitan planning offices, most of which regularly perform detailed surveys of small 
samples of their populations, keeping track of every movement of all members of a household 
in the course of one or more days, and recording respondent demographics. Because the surveys 
track these events by time of day, we also know how long each activity lasts. We study the 
surveys first to determine which demographic fields optimally classify people by some impor-
tant characteristic—like total time spent per day in each of their activities. For each household 
in the synthetic population, we use a procedure called “binary tree matching” on the chosen 
demographics to assign appropriate activity patterns based on the survey data (see Figure 2).

Given a reasonable set of activities assigned to the entire metropolitan population, each 
of these activities must be located in the city. For this we use a simple gravity model (see 
Appendix), which assigns a location to each non-household activity of each individual, based 
on distance from residence, work, or school. For these assignments, the synthetic individuals 
carry out their activities near where they are; for example, workers will go to lunch near their 
work location. 

The model then partitions each location into sub-locations: individual classroom mixing 
groups within a school, shops within a shopping center, work groups within a business loca-
tion. The number of sub-locations is computed by dividing the location’s peak occupancy by 

Figure 1. Schematic representation of social interactions. 

Figure 2. Binary tree for the assignment of house-
holds in a survey. For example, the population could 
be split into households with income above (B) or 
below (C) $50,000/yr, then split again into those with 
(E & G) or without children (F & H), and again into 
those with children above (I & L) or below (J & M) the 
age of 5 years. Finally, a set of survey households is 
randomly selected from each of the final categories: 
F, H, I, J, L, M. 



the appropriate mixing-group size. The mean work-group size varies by a standard 
industry classification code (SIC). We used information from studies conducted 
by Yee (1999) and Michaels (2003) to estimate the mean work-group size by SIC 
code. The mean work-group size was computed as the average from the two data 
sources (normalizing the worker density data), and ranges from 3.1 for transporta-
tion workers to 25.4 for health service workers. The average number of workers 
over all types of workgroups is 15.3.

The social contact network emerges from the simulation as individuals move 
through their daily activities and move into and out of contact at sub-locations 
(Del Valle 2007). Once we generate the complex network of interactions in the 
population, we study the effects on the spread of disease. Disease transmission 
occurs only between individuals who are in the same sub-location at the same 
time. The probability that a susceptible individual becomes infected during an 
activity is computed by accumulating transmission probabilities per unit time of 
contact with each infectious co-occupant of the sub-location. The transmissiv-
ity, T, (e.g., disease transmission) between pairs of individuals is multiplied by 
a susceptibility multiplier (e.g., how susceptible a person is to a disease) and an 
infectiousness multiplier (e.g., how infectious a person is). The infectiousness 
multiplier depends on the disease stage, the treatment history, and the age of the 
infectious person. The susceptibility multiplier depends on the treatment history 
or age of the susceptible individual. If susceptible person j has a susceptibility 
multiplier Sj, and infectious person i has an infectiousness multiplier Ii, then the 
probability that susceptible individual j will be infected during the activity is computed as

						         ,
 

where tij is the time during which susceptible person j was in the same sub-location as infectious person 
i; the sum extends over all infectious individuals who co-occupied the sub-location with individual j. 
The model computes the co-occupation times for all overlapping pairs of individuals as they enter and 
leave sub-locations.  

Disease impacts by different demographic characteristics (e.g., age), activities, industry classifica-
tion, including workforce reductions (see Figure 3), and geospatial differentiation can be extracted for 
use in planning mitigation activities (Mniszewski 2008). Our simulations can provide policy makers 
with information regarding where disease spreads and who should be targeted for treatment strategies 
such as vaccination.

The results from our simulations (see Figure 3 and Del Valle 2007) are consistent with previous 
studies that have shown that disease transmission is typically higher in school-age children due to 
their highly connected social networks. Furthermore, our simulations can be used to estimate the 
potential impact of disease spread and workforce absenteeism in workplaces. We are confident that our 
simulated population captures realistic social interactions and can be used as a tool for understanding 
disease transmission. 
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Appendix
Iterative Proportional Fitting (IPF)

Iterative proportional fitting is a statistical procedure that allows us to create a synthetic popula-
tion that matches the marginal distributions (e.g., the total value of one or more demographic char-
acteristics) at the census block-group level while retaining the demographic correlation structure of 
the samples in the large areas (Bishop 1975). It essentially creates the joint distribution matching all 

Figure 3. Absentee rates for different industries from a hypotheti-
cal H5N1 pandemic influenza outbreak. Notice that schoolteachers 
could have higher absentee rates when compared to the average 
and to other industries. 
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the marginal distributions by taking samples from the partial set of full records. The result is a set of 
households and individuals geographically distributed with correct demographics, statistically indis-
tinguishable from the real population. 

Gravity Model
The model uses a two-stage gravity algorithm to assign a location to each non-household activity of 

each individual. The gravity model is widely used in traffic analysis and has been described in detail 
(Voorhees, 1956; FHWA, 1978; Martin and McGuckin, 1998). Each individual has an anchor activity: 
For workers, the anchor is their work activity; for students, their school activity; otherwise, it is the 
individual’s residence. The first stage of the gravity algorithm assigns a location to the anchor activ-
ity of each worker and student. The model implementation of the gravity algorithm, in effect, sets the 
probability that worker i works at location j to be proportional to

	                                                                                        ,	

where dij is the travel distance in meters from the residence of worker i to work location j, and Nj is 
the number of workers employed at location j. The coefficient values are fit to ensure that the number 
of workers assigned to each work location matches Dun & Bradstreet business location data, and that 
the distribution of commuting distances from home to work matches the distribution extracted from 
the National Household Transportation Survey data. The second-stage gravity model that assigns 
locations to non-anchor activities follows a similar formulation, except that the distance is replaced by 
the sum of the distance from the anchor activity to the non-anchor activity plus the distance from the 
non-anchor activity to the place of residence. 
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