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Abstract

Finding the winner of an athletic contest or sporting event should be
a simple process: the competitor with the most runs, goals, points, or the
quickest time should be the winner. In practice, however, choosing a team
winner can be a challenge, especially when many teams are involved in a tour-
nament. In this article, we explore some of the specific dilemmas associated
with finding the winning team in a cross country running race.

Standard scoring of a cross country race is straightforward. A team typi-
cally consists of seven runners, and a team’s score is the sum of the placings of
its first five runners. A team’s sixth and seventh runners do not score points
towards their team’s total, but their place can serve to increase the team
score of their opponents. Teams are ranked by the order of their scores from
lowest to highest. While teams often face off head-to-head in dual meets,
invitationals of up to 30 teams are also common.

Though simple to implement, this race scoring system can yield surprising
and somewhat counterintuitive outcomes. Chief among these are failures of
binary independence: the relative ranking of two teams in an invitational
can depend upon the presence and performance of the other teams in the
race. For example, one team (the Acorns) might finish ahead of a second
team (the Buckeyes) when a third team (the Chestnuts) has a good day.
However, with identical races by the Acorns and Buckeyes, it is possible for
the Acorns to finish behind the Buckeyes if the Chestnuts instead have a
bad day. Troubling situations such as these are relatively common in cross
country running, and are well known to coaches and interested observers.
In this article, we study these issues and consider some alternatives to the
standard race scoring methods.

Social choice theory, an area of study on the interface of mathematics,
political science, and economics, provides a useful lens through which we
can examine cross-country race scoring. One particular aspect of this disci-
pline is concerned with studying the science of decision-making in voting and
elections, and comparisons with cross-country scoring are striking. It is ar-
guable, for example, that had Ralph Nader not been a candidate for the U.S.
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predisdency in the 2000 election, then Al Gore would have beaten George
W. Bush. Our electoral system violates binary independence in precisely the
way that cross-country scoring does. We examine parallels between cross-
country scoring and voting methods with an eye towards Kenneth Arrow’s
seminal result on the impossibility of finding a completely fair democratic
election method. We also draw some important distinctions between the two
subjects, particularly in the case of a two-team race.

Warming Up

Collegiate cross country running in the upper Midwest is highly competi-
tive. In the 36 years (through the fall of 2008), that the National Collegiate
Athletic Association (NCAA) has sponsored a Division III (non-scholarship)
men’s team championship, the top team has come from Illinois, Wisconsin,
or Michigan 26 times [6]. The University of Wisconsin-Oshkosh had won
three championships in the years leading up to the fall of 2001, when this
story begins. The Oshkosh team that year had a great mix of talent and
experience, and I had hopes that they would contend for the national title.
One early-season test for the Titans was at the Jim Drews Invitational, a
race bringing together much of the top Midwest Division III talent. The
event was hosted by Wisconsin-LaCrosse, a perennial running powerhouse
and nemesis of Oshkosh. Also competing was a team from the University of
Wisconsin-Madison, a strong Division I school.

The race took place on a wet Saturday in October, with 33 teams and 223
team runners racing over a 5 mile (8 kilometer) course. At the conclusion of
the event, the UW-Madison runners had finished in places 1, 2, 3, 8, and 27,
those from UW-LaCrosse had finished in positions 4, 12, 15, 24, 35, 49, and
55, and UW-Oshkosh runners had finished in places 10, 11, 13, 28, 30, 43,
and 69. Scoring an NCAA cross country meet is straightforward, with three
fundamental rules (See [3, p. 122]):

1. A team’s score is the sum of the placings of their first five runners.

2. Teams are ranked by the order of their scores from lowest to highest.

3. Although the sixth and seventh runners of a team to finish do not score
points toward their team’s total, their place, if better than those of any
of the first five of an opposing team, serve to increase the team score of
the opponents. When it occurs, this situation is called displacement.
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Using this scoring method, UW-Madison won the invitational with an
aggregate score of 41, UW-LaCrosse’s total of 90 placed them second, and
UW-Oshkosh was a close third with 92 points. The results were disappointing
for me, but only because I had hoped Oshkosh would beat UW-LaCrosse.
Beating UW-Madison was not a realistic goal, and was in fact irrelevant,
as the teams compete in different divisions and would not race each other
again. This led to an interesting question: if we eliminated the UW-Madison
runners from the race results, would the result be the same? After such a
change, UW-LaCrosse runners move up to respective places 1, 8, 11, 20, 30,
44, and 50, while the UW-Oshkosh runners improve to positions 6, 7, 9, 23,
25, 38, and 64, so the teams tie for first place, with 70 points each. Somehow
the presence of UW-Madison runners was detrimental to the UW-Oshkosh
cause, not just because UW-Madison beat UW-Oshkosh, but also because
they helped UW-LaCrosse relative to UW-Oshkosh.

What happens if we ignore all other teams except for LaCrosse and
Oshkosh? If we are really trying to determine which of the two teams was
stronger on that October day, it makes sense to consider them head-to-head,
in a two-team race. A way to picture this reduced race is as a finite sequence
of runners:〈

1
L1,

2
O1,

3
O2,

4
L2,

5
O3,

6
L3,

7
L4,

8
O4,

9
O5,

10
L5,

11
O6,

12
L6,

13
L7,

14
O7

〉

Here Oi and Li represent the ith finishers for Oshkosh and LaCrosse, respec-
tively, and the numbers oi and `i above them represent their respective fin-
ishing positions. Scoring this head-to-head race yields 27 points for Oshkosh
and 28 points for LaCrosse. If Oshkosh and LaCrosse had been the only two
teams on the course that day, Oshkosh would have won!

Races like the Jim Drews Invitational occur in high school and colle-
giate cross country meets across the country many times every fall weekend,
and scoring oddities such as those involving UW-Oshkosh and UW-LaCrosse
are well known to coaches and interested observers. In this article, we will
analyze some of the mathematics of cross country scoring, consider criteria
that measure the reasonableness of scoring methods, and explore alternative
scoring methods. Readers familiar with the language and theorems of social
choice theory will note strong parallels to that area of mathematics, and we
will borrow liberally from its terminology. We will also, however, draw some
strong distinctions between cross country scoring and vote counting.
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Mile 1: Basic Terminology and Some Alternatives

At the start of a large invitational race, runners need to balance carefully two
goals: they need to begin quickly enough to establish a favorable position,
but not so quickly that they tire and fade at the end of the race. So as the
starting gun goes off, we clarify what we mean by a “scoring method,” and
formalize some of our notations.

Definition 1 Let T = {T1, T2, . . . , Tn} be a set of n teams, each consisting
of k runners. A race is an ordered list of the n ·k runners. A scoring method
is a function that accepts a race as an input and produces as output a linear
ordering of T . We shall use Ti1 ≺ Ti2 ≺ · · · ≺ Tin to denote the ordering,
where team Ti1 finishes first, team Ti2 finishes second, and so on.

In this article, we will insist that the ordering be strict. While team ties occur
during meets, they are easy to break. For example, the NCAA tiebreaking
rule is to compare the tying teams’ fifth runners and break the tie in favor of
the team whose fifth runner finishes ahead of the other(s). For simplicity, we
will also consider only scoring methods that are symmetric with respect to the
teams, and anonymous with respect to the runners. By symmetric, we mean
that the names of the teams are irrelevant, i.e., interchanging the runners
of teams A and B in a race will interchange A and B in the team ranking
outcome. By anonymous, we mean that if any two runners from a team
interchange places, the outcome remains the same. Anonymity guarantees
that there are (nkCk)(n(k−1)Ck) · · · (kCk) essentially distinct races.

In scoring a meet, the choice by the NCAA to use five scoring runners
and two displacing runners is somewhat arbitrary. The simplest change we
can make to the usual scoring method is to change those numbers: let us
call a method that uses standard scoring but with m scoring runners and
` displacing runners an (m, `)-standard scoring system. For example, the
recent world cross country championships in Amman, Jordan in March 2009
used a (4, 2)-scoring system (see [4]) to determine the team champion. The
choice of k and ` can have a great impact on deciding the winning team in a
race even if there are only two teams involved (a dual meet). In the head-to-
head matchup between UW-Oshkosh and UW-LaCrosse, Oshkosh would win
using (5, 2), (6, 1) or (3, 0)-standard scoring, whereas UW-LaCrosse would
win (by virtue of the standard tiebreaker) using (4, 0) scoring. UW-LaCrosse
would also win using (1, 0) standard scoring (since LaCrosse’s top finisher
beat Oshkosh’s top finisher) but that is hardly an acceptable method because
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it depends only on the relative finishing positions of one runner from each
team (in this case, the winning team is the team whose first runner finishes
first). The notion of single-runner dominance in a race will be important for
us later, so let us formalize this idea:

Definition 2 A scoring method is called non-team oriented if there is some
i, 1 ≤ i ≤ k such that for every race, the order of the teams is determined
solely by the relative positions of the ith finisher for the teams. That is, for
all teams A, B in an invitational meet, A ≺ B ⇔ ai < bi.

For example, in a race involving five runners per team where we ignore the
placings of the first four runners from each team and rank the teams based
solely on the ordering of their fifth runner would be a non-team oriented
scoring method. We would like to avoid such methods!

The Jim Drews Invitational example points to difficulties with the stan-
dard invitational scoring methods. Most obvious is that one team’s perfor-
mance relative to another team can depend on the other teams in the field (as
UW-Oshkosh’s performance relative to UW-LaCrosse was influenced by the
presence of UW-Madison). We call this a failure of the Binary Independence
condition.

Binary Independence condition: The relative ranking of teams A and
B in the race results should not depend upon any other team.

More precisely, suppose a race takes place in which team A beats team
B in the final ranking. Shortly thereafter a second race takes place with the
same teams and the same runners, and in that race some runners change
positions, but the relative positions of runners from team A and B don’t
change at all. Then team A should still beat team B in the rankings.

A scoring method should ideally possess this property because deciding
whether team A or team B finishes higher in the rankings should not depend
on factors such as injury, illness, stumble, or poor performance by a member
of team C. If the relative ranking of A and B is never affected by the positions
of other runners in any race, then the scoring method is said to satisfy the
Binary Independence condition. We use the word “should” in its statement
(and in our statements of other conditions in this article) to emphasize that,
while desirable, the property is not possessed by all scoring methods. The
Jim Drews example shows that (5, 2) standard scoring violates the Binary
Independence condition, since moving UW-Madison runners to the end of

5



the race changes the relative ranking of UW-LaCrosse and UW-Oshkosh to
a tie, broken in favor of UW-Oshkosh. The other (m, `) standard scoring
methods are similarly flawed.

The Binary Independence condition suggests an alternative to the stan-
dard invitational scoring methods. Given a race with two or more teams,
why not match each team head-to-head with every other team, and declare
the team that wins all of those matchups as the winner of the invitational?
This amounts to scoring a series of dual meets, with the winner of the in-
vitational being the team that wins all its head-to-head matchups. Second
place could be given to the team that wins all but one of its head-to-heads,
third to the team that beats all but the top two teams head-to-head, and so
on.

Though attractive at first glance, this scoring mechanism has a fatal prob-
lem. Consider the following race between three teams, A, B, and C:

Example 1〈
1

A1,
2

B1,
3

C1,
4

B2,
5

C2,
6

A2,
7

C3,
8

A3,
9

B3,
10
A4,

11
B4,

12
C4,

13
B5,

14
C5,

15
A5

〉
If we match each team head-to-head, computation shows that team A

beats team B (27-28), team B beats team C (26-29), and team C beats
team A (27-28). In this example, we have a nontransitive result: team A
beats team B and team B beats team C, but A fails to beat C. There is no
team that wins all of its head-to-head matchups. Thus, matching the teams
up in this way does not provide us with a scoring method at all, for it does
not provide a linear ordering of the teams.

Though matching the teams up head-to-head fails as a scoring method,
it suggests another condition for our scoring methods. Though not every
invitational has a team that wins all of its head-to-head matchups, if there
is such a team, it is reasonable to expect that team to win the invitational.
We shall call this condition the Condorcet Criterion, and call a team that
wins all its head-to-head matchups a Condorcet team.

The Condorcet Criterion: A team that beats all the other teams in an
invitational in head-to-head competition should be the winner of the invita-
tional.

Standard invitational scoring methods do not possess the Condorcet prop-
erty in general. Creating examples that show violations is a relatively simple
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matter. Given a (m, `) standard scoring method (with m ≥ 2), we find a
team A that consists primarily of strong runners but also possessing one or
two weak runners. The strong runners allow A to win individual head-to-
head matchups with other teams, but if we choose a sufficiently large set of
teams T for our invitational, we can ensure that A’s bottom runners will
finish far enough down in the rankings that A fails to win the invitational.
For example, we can show that the standard (5, 2) scoring method violates
the Condorcet criterion using an example involving four teams A, B, C, and
D.

Example 2〈
1

A1,
2

A2,
3

A3,
4

B1,
5

C1,
6

D1,
7

C2,
8

D2,
9

B2,
10
D3,

11
B3,

12
C3,

13
C4,

14
B4,

15
D4,

16
B5,

17
D5,

18
B6,

19
C5,

20
B7,

21
C6,

22
C7,

23
D6,

24
D7,

25
A4,

26
A5

27
A6

28
A7

〉
In this race, runners from team A take the top three places, but the

team is fully displaced, that is, the seventh runner from each of the other
three teams finishes before A’s fourth and fifth runner. In each head-to-head
competition involving A then, A takes places 1, 2, 3, 11, and 12 giving it an
aggregate score of 29. Each opposing team in the head-to-head with A places
runners in positions 4 through 10, giving it a score of 30. Thus A wins each
head-to-head matchup and is therefore a Condorcet team. However, when
we score the race using the standard method, A has 57 points, B 54 points,
and C and D 56. So A not only fails to win the invitational, but actually
finishes last. Standard invitational scoring violates the Condorcet criterion,
and it can do so in the worst possible way!

Mile 2: Fairness Criteria and Other Scoring Methods

The first mile of a cross country race typically goes quickly. Runners are
fresh and the excitement of competition carries them along. In the second
mile, runners need to assess their positions, while remembering to be patient
as much of the race remains. In our consideration of scoring methods, we’ll
consider some other slightly more complex scoring methods and ways to
measure their reasonableness. But we’ll need to be patient.

Let us begin our second mile by considering a slightly different way of
comparing two teams, call them P and Q, head-to-head. One way to measure
an individual runner’s strength is to count how many opponents he is beaten
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by, ignoring his own team’s runners. A team’s score could then be determined
by aggregating this information among all the team’s scoring runners. More
formally, given that runner Pi is the ith scoring runner (of m) from team P ,
let pi,Q be the number of runners from team Q who finish ahead of runner
Pi. Then 0 ≤ pi,Q ≤ m + `, where ` is the number of non-scoring displacing
runners. A team score for P in a head-to-head matchup with team Q can be
defined as

∑k
i=1 pi,Q, with the lower overall score winning the meet. Let us

call this method the (m, `) Runner Matchup Method, since each individual
runner on a team is compared with the opposing team.

If we apply the (5, 2)-Runner Matchup Method in a dual meet between
teams A and B from Example 2, we see that a1,B = 0, a2,B = 0, a3,B = 0,
a4,B = 7, and a5,B = 7. Using the Runner Matchup Method, team A scores
14 points. A similar calculation shows that team B scores 15 points.

Is this really a new scoring system? An alert reader will notice that the
team tallies in this example (14-15) differ by 15 points from the respective
tallies (29-30) obtained using the standard head-to-head scoring. This is no
coincidence. Let P and Q be two teams in a dual meet. Given runner Pi

from team P (0 ≤ i ≤ m), let pi denote Pi’s overall finishing place. Since Pi’s
place in a dual meet with Q is determined by the runners finishing ahead of
him (both on team P and on team Q), we have pi = i+pi,Q. Thus the (m, `)
standard team score for P in a dual meet with Q is

m∑
i=1

pi =
m∑

i=1

(i + pi,Q) =
m(m + 1)

2
+

m∑
i=1

pi,Q.

Thus
∑m

i=1 pi and
∑m

i=1 pi,Q differ by a term that depends only on m, the num-
ber of scoring runners, and not on the placements in any individual race.
Thus the (m, `) standard scoring method and the (m, `) Runner Matchup
Method are equivalent, yielding identical team rankings and identical differ-
ences between team scores in dual meets.

Though the Runner Matchup Methods are no different from the standard
scoring methods, they allow us to identify a powerful relationship between a
team’s aggregate score in an invitational and its head-to-head scores against
other teams in the race. To see it, suppose that in an invitational |T | = n and
each team has m scoring runners. As in the dual meet, a runner’s finishing
place in an invitational is determined by runners finishing ahead of him, both
on his and on opposing teams. Thus,

8



pi = i +
∑

Q ∈ T
Q 6= P

pi,Q.

Then the invitational team score for team P using the (m, `) standard
scoring method is

m∑
i=1

pi =
m∑

i=1

i +
∑

Q ∈ T
Q 6= P

pi,Q


=

m∑
i=1

i +
∑

Q ∈ T
Q 6= P

(
m∑

i=1

pi,Q

)

=
m∑

i=1

i +
∑

Q ∈ T
Q 6= P

[
(Standard Team Score of P vs. Q)−

m∑
i=1

i

]

= (|T | − 2)
m∑

i=1

i +
∑

Q ∈ T
Q 6= P

(Standard Team Score of P vs. Q) .

These show that teams’ standard invitational scores can be obtained from
the sum of their standard head-to-head scores. We need only subtract a
constant based on the number of teams in the invitational. We thus have

Theorem 1 A team’s score using standard invitational scoring can be de-
termined from its head-to-head matchup scores. If there are n teams and
m scoring runners per team (with or without displacement), then a team’s

invitational score is the sum of its head-to-head scores, minus (n−2)m(m+1)
2

.

Example 3 Using the data from Example 2, there are n = 4 teams and
m = 5 scoring runners. Team A scores 29 points in each of its head-to-head
matchups with teams B, C, and D. The sum of these scores is 87; from this
we subtract (n−2)(m)(m+1)

2
= (4−2)(5)(5+1)

2
= 30 to find A’s invitational total of

57. The other team’s invitational scores may be similarly verified.
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Aside from describing a relationship between a team’s head-to-head scores
and its aggregate score in an invitational, Theorem 1 yields several corollar-
ies, the first of which is immediate. Recall that a Condorcet team in an
invitational beats every other team head-to-head.

Corollary 1 Using (m, `) standard scoring, the winning team in an invi-
tational is the team whose head-to-head scores have minimal sum, or equiv-
alantly, have minimal average.

Corollary 2 The (m, 0) standard scoring method cannot rank a Condorcet
team at the bottom.

Proof. Without displacement, the total number of points available to
both teams in every head-to-head matchup is the same:

∑2m
i=1 i = m(2m+1).

Call this number S. If team P wins all its head-to-head matchups, then P
will score fewer than S

2
in each of its matchups, and so its overall average will

be less than S
2

as well. The average score of all n teams across all matchups
must be S

2
, so there must be another team, call it Q, whose average is greater

than S. Thus team Q will be ranked below P in the invitational rankings.
Corollary 2 is important because it demonstrates a problem with using

displacements. In Example 2, team A was bottom ranked even though it
won all of its head-to-head matchups. Corollary 2 tells us that this is a
consequence of allowing displacing runners. Though the (m, 0) standard
scoring methods fail the Condorcet criterion in general, at least they cannot
fail as badly as those (m, `) methods where ` > 0: A Condorcet team cannot
be bottom ranked.

Mile 3: More Criteria and Alternative Scoring Methods

Since a Condorcet team A in an invitational beats every other team head-
to-head, it is natural to ask if there are any methods that guarantee team
A a first place finish. Consider the following scoring procedure: score the
teams using a standard (m, 0) scoring method. Once a preliminary ranking
of the teams has been established, we drop the lowest ranked team. Since
A cannot be ranked last in this method, A will not be eliminated. Now we
rescore, with all of the runners from the bottom-ranked team removed. A
remains the Condorcet team after this elimination step. We now repeat the
process, scoring the invitational as usual and eliminating the team that is
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now bottom-ranked. We continue until there is only one team remaining,
and declare that team to be the winner of the invitational. In this case, we
know that the winning team must be A: at every stage, team A remains the
Condorcet team, and by Corollary 2 cannot be bottom-ranked at any step
in the process. Thus team A can never be eliminated. If we call this method
the Iterated (m, 0) Scoring Method, then we have shown the following result.

Corollary 3 The iterated (m, 0) scoring methods satisfy the Condorcet cri-
terion.

We can extend this to obtain a complete ranking of the teams in the
invitational. Once the top-ranked team has been determined, we can elim-
inate that team and determine the iterated (m, 0) scoring method winner
from among the remaining teams, calling that the second place team. This
ensures that a team that beats all other teams head-to-head except A is
guaranteed to finish second, if such a team exists. Other rankings may be
determined similarly.

Example 4 Consider the following race:〈
1

A1,
2

A2,
3

A3,
4

B1,
5

B2,
6

B3,
7

B4,
8

B5,
9

C1,
10
C2,

11
C3,

12
C4,

13
C5,

14
A4,

15
A5

〉
In head-to-head competition, A beats teams B and C by identical 25-30

scores and is therefore the Condorcet team. The team ranking using (5, 0)-
standard scoring is B ≺ A ≺ C by a score of 30-35-55. This shows that we
may have a violation of the Condorcet criterion even if displacement is not
allowed. However, if we use the iterated (5, 0) scoring method, then team C
is dropped at the end of the first round, and teams A and B face off in the
second round with A winning. To find the second place team, we allow B
and C to face off head-to-head (with A removed). Then B beats C 15-40, so
the ranking using the iterated (5,0) scoring method is A ≺ B ≺ C.

We have identified a scoring method that satisfies the Condorcet crite-
rion. The iterated methods are less intuitive than standard scoring (can
you imagine coaches trying to predict their teams’ places in the middle of a
race?), but are significantly more stable. Barring practical concerns, is there
any theoretical reason to avoid such a method? Unfortunately, the answer
to that question is, “Yes.”
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Example 5 Consider the following race among three closely matched teams
A, B, and C. Midway through the race, the placings of the runners are as
follows:

〈
1

C1,
2

C2,
3

A1,
4

A2,
5

A3,
6

B1,
7

B2,
8

B3,
9

B4,
10
B5,

11
A4,

12
C3,

13
C4,

14
C5,

15
A5

〉
The quick-thinking coach from team A scores the race at the midway

point, using the iterated (5,0) scoring method. When she does so, she finds
that in the first round of scoring, the scores for A, B, and C are, respectively,
38, 40 and 42. In this preliminary scoring, Team C would be eliminated, and
the race would be rescored with only teams A and B. In the second round,
A would have runners in positions 1, 2, 3, 9, and 10, for a total score of 25,
while B would hold positions 4 through 8 for a total score of 30. So at this
point in the race, A is leading the race, but it is close! The coach from team
A exhorts her team to push hard over the last half of the course, and one of
them, runner A4, responds. Over the last mile, she surges ahead of all the
runners from team B, clinching her team’s victory, right? Let’s look at the
final results.

The final runner placings in the race are

〈
1

C1,
2

C2,
3

A1,
4

A2,
5

A3,
6

A4,
7

B1,
8

B2,
9

B3,
10
B4,

11
B5,

12
C3,

13
C4,

14
C5,

15
A5

〉

Using the iterated (5,0) scoring method, Round 1 yields scores of 33, 45,
and 42 for teams A, B, and C, respectively. Team B is eliminated and we
rescore the race. In Round 2, A holds positions 3, 4, 5, 6, and 10, while C
holds places 1, 2, 7, 8, and 9. In the final scoring, then, A has 28 points,
while C has 27. Amazingly, C wins! Runner A4’s surge through the field of
runners perversely hurt her team’s cause.

Unfortunately, situations such as this, though relatively rare, can occur
with the iterated scoring methods. We say that they violate the Monotonicity
criterion.

Monotonicity Criterion: If team P is the winner of a race, and in a
second race with the same teams and runners, a runner from team P improves
his performance by moving up one or more places and no other runners
change position, then team P should remain the winning team.
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Our search for an improved scoring method is beginning to get frustrating!
We have seen flaws in the usual system, but each new method possesses some
undesirable properties of its own. Before we get too depressed, however, let
us make note of some positives for our scoring systems.

First, the (m, `) standard scoring methods satisfy the monotonicity crite-
rion, for improving a winning team’s individual placings can only lower that
team’s score in these point-based systems, and can only raise other teams’
scores. Second, all the scoring methods we have described thus far possess a
desirable property that we call the Pareto condition.

The Pareto Condition: If a scoring method involves k runners from each
of teams A and B, and if ai < bi (that is, if runner Ai beats runner Bi) for all
i (1 ≤ i ≤ k), then team B should not finish above team A in the rankings.

The Pareto condition says that if all of my team’s runners beat their
individual counterparts from your team, then your team should not be ranked
above my team by the scoring method.

Since better placings in a race yield lower team scores in the standard
scoring methods, the (m, `) standard scoring methods, and by extension,
the iterated (m, `) scoring methods satisfy the Pareto condition. Surpris-
ingly, however, there are some seemingly reasonable methods that violate it.
Consider the following method, another way to match up the teams head-
to-head: create some fixed ordering of the teams in the invitational (perhaps
randomly). After choosing a (m, `) standard scoring method, match up the
first two teams in the list head-to-head using that method. The winner of
that matchup will advance to face the third team in the list in another head-
to-head matchup. The winner of that will progress to face the fourth team
in the list, and so on. The winner is the team that is left when the list has
been exhausted.

Not surprisingly, this method satisfies the Condorcet criterion, since any
team capable of winning each of its head-to-head matchups will survive to
the end of the competition. On the other hand, this sequential-type scoring
method violates the Pareto condition in general.

Example 6 Consider the following race with four teams (A, B, C, and D)
with three runners per team:〈

1
C1,

2
B1,

3
A1,

4
B2,

5
A2,

6
A3,

7
D1,

8
D2,

9
D3,

10
C2,

11
C3,

12
B3

〉
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Let us score this meet using (3, 0) standard scoring using head-to-head
matchups in the sequence [A, B, C,D]. We match up teams A and B (ignor-
ing all the other teams) and find that team B wins, 10-11. Team B advances
to face team C which beats B by a head-to-head score of 10-11. Team C
then advances to face team D, and D wins that matchup by the score of
9-12. So D is the winner of the invitational using this method.

However, runner A1 beats runner D1, A2 beats D2, and A3 beats D3.
This example therefore shows a violation of the Pareto condition. In fact,
the offense is far worse than a simple Pareto violation. Using this process,
Team D wins the invitational even though all of team A’s runners finish
before all of team D’s runners. Similar violations of the Pareto condition
using general (m, `) sequential scoring of this type can easily be constructed
for m > 3 and ` > 0.

Mile 4: Some Social Choice Theory

The middle miles of a cross country race are often where the race is won. Run-
ners need to keep their attention on their competition even as they become
fatigued. Here, we focus on some of the formal language of voting theory.
We will use the notation of [9]: [8] provides an elementary introduction to
the subject.

We consider the situation in which a group of people (the voters) wishes
to decide among several alternatives (most typically, these alternatives are
candidates). Let A be the (finite) set of candidates or alternatives, and let
V be the (finite) set of voters. We assume that each voter in V has an
established preference between any two candidates a, b ∈ A, and that these
preferences are transitive. Thus the voter has a linearly ordered preference
list of candidates, ranking them from top to bottom.

Definition 3 A social welfare function is a function that accepts as input
a sequence of individual preference lists of some fixed set A and produces as
output a single listing (perhaps with ties) of the set A. This list is called the
social preference list.

Social welfare functions provide the means of counting the ballots in an
election, and different social welfare functions yield different election results
in general. For example, the well-known Plurality Method is the social welfare
function that ranks the candidates in order of the number of times they
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appear at the top of voters’ preference lists. The Borda Count awards points
to the candidates as follows: if there are n candidates, the candidate at the
bottom of a list gets zero points, the alternative at the next to the bottom
spot gets one point, then next one up gets two points, and so on up to the
top candidate on the list who gets n− 1 points. For each candidate, we add
up the total number of points awarded over all the preference lists, and rank
the candidates in order of total points, from most to least.

A connection between social welfare functions and cross country scor-
ing methods is immediately apparent. The teams in an invitational can be
thought of as the alternatives in an election, with the runners serving as
the voters: the number of voters corresponds to the number of runners per
team. Finding the winner of an invitational is then analogous to selecting
the winner of an election, and cross country scoring methods correspond to
social welfare functions. As a simple example, consider a two voter, three
candidate election, where voter 1’s preferences are candidates B, A, C in that
order, while voter 2’s preferences are candidates A, B, C. By analogy, we pic-
ture this as corresponding to a three-team race with two runners per team:
< B1, A1, C1, A2, B2, C2 >. We have no need here to make the analogy more
precise; rather, we ask the reader only to consider that there is a parallelism
between the two domains. In some sense, we can think of the runners in a
race as voting with their feet!

While cross country scoring and vote counting share some similarities,
they are clearly not the identical. A notable distinction occurs when there are
two candidates/teams. May proved (see [2]) that with two candidates, there
is only one reasonable method of choosing the winner of an election: majority
rule, i.e., the winner of a 2-candidate election should be the candidate who
receives more first place votes. However, as we noted in our UW-Oshkosh vs.
UW-LaCrosse head-to-head example when we considered different values of
m and ` in the (m, `) standard scoring method, there are many reasonable
ways to score a two-team race. Moreover, even when the number of scoring
runners remains fixed, we can see different results.

Example 7 When UW-Oshkosh and UW-LaCrosse are considered head-to-
head in the Jim Drews example, Oshkosh runners finish in positions 2, 3,
5, 8, and 9, while LaCrosse runners finish at 1, 4, 6, 7, 10. Rather than
finding the team scores using the sum of the placings (in which case Oshkosh
wins), we could find the sum of the cube roots of the runners’ placings, again
giving victory to the team with the smaller score (This effectively places less
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importance on earlier finishers). LaCrosse wins the head-to-head competition
by an approximate score of 8.47 to 8.49.

In this sense, then, there are more cross country scoring systems than there
are social welfare functions.

Just as there are criteria measuring the reasonableness of cross country
scoring methods, there are means of assessing the value or fairness of different
social welfare functions. In fact, our cross country scoring criteria have been
drawn directly from analogous criteria in voting theory. For example, the
Pareto Condition (social choice version) asserts that if every voter prefers
candidate x over candidate y on his or her ballot, then y should not win
the election. Similarly, a social welfare function is said to satisfy the Binary
Independence Condition (social choice version) if the following holds: Given
our fixed sets A and V , but two different sequences of individual preference
lists. Suppose that exactly the same people have candidate x over candidate
y in their list. Then we either have x over y in both output rankings of the
candidates, or y over x in both output rankings, or y and x tied in both
output rankings. That is, the positioning of candidates other than x and y
in the individual preference lists is irrelevant to the question of whether x is
preferred to y or not in the final output list.

Just as our standard cross country scoring methods’ violations of binary
independence can have consequences for invitationals, violations of binary
independence in the social choice domain can have profound effects on elec-
tions. For example, had Ralph Nader not been a U.S. presidential candidate
in the 2000 election, then it is likely that Al Gore would have beaten George
W. Bush ([7]). The U.S. presidential electoral system violates binary inde-
pendence in precisely the way that cross-country scoring does.

While fairness criteria and the search for an optimal social welfare func-
tion have been the subject of research for well over half a century, Kenneth
Arrow proved ([1]) that this exploration is inherently limited.

Arrow’s Impossibility Theorem (1950)1 If A has at least three elements
and the set V of individuals is finite, then the only social welfare function for
A and V satisfying the Pareto and Binary Independence conditions is one for
which there is a single voter v ∈ V such that for every choice of individual
preference lists by the voters, the social preference list is precisely the same
as the individual preference list of v.

1Arrow’s Impossibility Theorem earned him the Nobel prize in Economics in 1972.
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Arrow’s Theorem says, simply, that the only social welfare functions satis-
fying both the Pareto and Binary Independence conditions are dictatorships
(with v serving as the dictator).

Mile 5: Impossibility?

The disheartening implication of Arrow’s Theorem is that there is no demo-
cratic voting method that satisfies both the Pareto and Binary Independence
criteria. When we return to the analogy between cross country scoring and
vote counting, we naturally wonder whether Arrow’s Theorem yields an anal-
ogous result in running. We take up this question in the last mile of our race.

In pursuing alternatives to our standard scoring methods, we have en-
countered numerous roadblocks. Each of our methods suffered from some
notable flaw, whether it be a violation of the Condorcet, Monotonicity, or
Pareto criteria. Moreover, we have not yet found a cross country scoring
method that does satisfy our condition of Binary Independence, the issue
that motivated our initial investigation. Before we show how difficult this
condition is to satisfy, let us look at an example.

Example 8 Suppose that teams A and B are the only two teams in a race,
and we allow only k = 2 runners per team. There are 4C2 = 6 possible
different races:

1. 〈A1, A2, B1, B2〉 , and symmetrically 4. 〈B1, B2, A1, A2〉
2. 〈A1, B1, A2, B2〉 , 5. 〈B1, A1, B2, A2〉
3. 〈A1, B1, B2, A2〉 , 6. 〈B1, A1, A2, B2〉 .

Without knowing precisely what our scoring method is, we can say a number
of things about it. For example, if we insist that the Pareto condition be
satisfied, team A necessarily must win Races 1 and 2, while team B wins
Races 4 and 5. Only Race 3 and Race 6 offer any possible ambiguity. Suppose
that our scoring method allows A to win the third race. Then, by symmetry,
B wins Race 6. Recall our definition of non-team oriented methods from
Definition 2. In this case our scoring method is indeed non-team oriented:
in each race, the team winner corresponds to the team whose first runner
finishes first. On the other hand, suppose that we decide instead that team
A should win race 3 (and, symmetrically, B wins Race 6). This again yields
a non-team oriented scoring system, in which the winning team is the team
whose second runner finishes first, i.e., A ≺ B ⇔ a2 < b2.
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Example 8 shows that when there are two teams and only two runners per
team, there are only two scoring methods that satisfy the Pareto condition,
and both of these are non-team oriented. Though this is disturbing, it is but
a single, small example. What if there are more than two teams?

Example 9 Suppose that as in Example 8 there are only k = 2 runners per
team, but now there are three teams in the race. Then there are a total of
(6C2) · (4C2) = 90 different races. Consider the race

〈A1, B1, B2, A2, C1, C2〉 . (1)

If we insist that our scoring method satisfy the Pareto condition, then team
C should finish last. However, there is flexibility in the relative positions
of teams A and B. Suppose that our scoring method chooses A to be the
winning team in the race. If our method satisfies the Binary Independence
condition (as well as symmetry), then the method is completely determined.
For example, consider the race 〈B1, A1, C1, C2, B2, A2〉 . The Pareto condition
ensures that B ≺ A, while Binary Independence ensures that B ≺ C, since
ignoring team A gives the race 〈B1, C1, C2, B2〉 , which B wins by symmetry.
Similarly, A ≺ C, so B ≺ A ≺ C. The team ranking corresponds precisely
to the finishing order of the teams’ first runners. This is no coincidence:
the team rankings from each of the 90 races is determined solely by the first
runner placings. So our choice to make A the winner in (1) gave us a non-
team oriented method depending only on a team’s first runners. Similarly, if
we had chosen B to be the winner in (1), we would have found our method
to be non-team oriented, with team rankings dependent only on the teams’
second runners.

Examples 8 and 9 highlight the challenge of satisfying both the Pareto
and Binary Independence conditions. Unfortunately for seekers of fair scoring
methods, Example 9 generalizes to an arbitrary number of scoring runners.
This is our main result.

Theorem 2 Arrow’s Theorem for Cross Country Scoring: If there
are at least three teams involved in an invitational, then the only scoring
methods that satisfy Binary Independence and the Pareto condition are the
non-team oriented methods.
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Figure 1: The traditional symbol for cross country running

That is, the only way to score a race consistently that will ensure that
the Pareto and Binary Independence conditions are satisfied is to pick an
index i (1 ≤ i ≤ k), and rank the teams according to the placings of their
ith runners. Thus, the social choice version of Arrow’s Theorem yields an
analogous version in the cross country running domain, with the collection
of ith runners for each team playing the role of the dictator in an election.
Our discussion in the previous section highlighted some distinctions between
elections and cross country races, so the classes of social welfare functions
and cross country scoring methods are different sets. Thus Theorem 2 is not
merely a restatement of of Arrow’s Theorem in a new domain; it is in fact a
slightly different result.

The proof of Theorem 2, like the proof of the social choice version of
Arrow’s Theorem, is not conceptually difficult, but it is technical, so it is
omitted here. The result follows using a modification of Taylor’s proof of
Arrow’s Theorem (social choice version), found in §10.4 of [9].

An interesting coincidence is that the traditional symbol of cross country
running is the two letters “CC” cut by an arrow (see Figure 1). Perhaps the
symbol designers knew something about scoring methods! And with that
final push, we cross the finish line.

Warmdown: Some Concluding Remarks

The cross country version of Arrow’s Theorem is disheartening. There is
no reasonable scoring method that satisfies both the Pareto condition and
Binary Independence. All is not lost, however. Here is one very simple way
of finding the winner of an invitational: rank the teams in order of total
finish time or equivalently, average finish time of the scoring runners. This is
the system that is used to rank the teams in the International Association of
Ultrarunners 100 Kilometer World Challenge events (see §10.24 of [5]). This
system satisfies all of our stated reasonableness criteria. However, there is
a tradeoff: according to our definition, it is not a scoring method. Scoring
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methods accept as input a ranking of runners and do not take into account
finishing times.

This distinction is as much philosophical as technical. Since this To-
tal Time Method involves only the runners’ times and not their placings,
Binary Independence is satisfied. UW Oshkosh’s relative placing against
UW LaCrosse does not rely at all upon the presence of UW-Madison run-
ners. However, this method also removes one exciting aspect of cross country
running: the head-to-head individual competition. The total time method
involves a race against a clock rather than against opponents. So though it
might be a mathematically superior means of scoring a race, it is perhaps
less desirable.

After competing strongly all season and climbing to second in the final
NCAA Division III cross country poll, the UW-Oshkosh men’s cross coun-
try team finished sixth at the 2001 NCAA Championships in Rock Island,
Illinois. The winner? UW-LaCrosse.
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