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1 Introduction

The use of mathematical methods to develop rankings of sports teams is
certainly not a new idea. See for instance, Ford [7]. Ranking methods are
particularly important in Division I college football, because unlike nearly
any other sport, the champion is not determined through a playoff system.
Instead, the Bowl Championship Series (BCS) Standings are used to select
the two teams that will compete for the national championship. The BCS
Standings are determined through a combination of two human polls and
six computer ranking methods [2]. These methods take a variety of factors
into account, including a team’s individual win-loss record, its strength of
schedule, and so on. Most college teams are affiliated with conferences, and
the reputations of the various conferences can have a large influence on the
team rankings, particularly in the human polls. Jeff Sagarin’s NCAA football
ratings published in USA Today [20] include conference rankings as well as
rankings of individual teams. There is a great deal of interest in ranking
methods for college football. Kenneth Massey maintains an extensive web site
[14] that provides information on an astonishing number of ranking methods
in addition to his own. For instance, in the 2008 season, Massey compared
the rankings produced by 113 different methods [13].

A natural approach to developing a mathematical ranking method is to
create a matrix whose entries are determined in some way by the results of
games played between teams. Keener [8] discussed a method in which the
ranking of teams is derived from the computation of the dominant eigenvector
of a non-negative matrix. Massey [10] took an approach that involves the
solution of a least squares problem. Colley [4] developed a method that also
involves the solution of a linear system of equations. The Massey and Colley
methods are both used by the BCS, as is Sagarin’s method. Matrix methods
based on Markov Chains have been proposed by Redmond [17] and Govan
et al. [5]. The latter method is a generalization of the Google PageRank
algorithm developed by Page et al. [16].



In this paper we propose a Markov method that is also similar to the
PageRank idea. Our method takes advantage of the block structure that is
particularly evident in college football due to the low number of games played
(relative to other sports such as basketball) and the fact that most teams are
affiliated with conferences. For the most part, teams within conferences all
play each other (some larger conferences are further divided into two divi-
sions), and there are comparatively fewer interconference games. Because of
this, a matrix whose entries are determined by the outcomes of games can
be partitioned very nicely into a block structure in which the dense diag-
onal blocks represent conference games, and the sparse off-diagonal blocks
correspond to inter-conference matchups. Figure 1 shows the structure of
the adjacency matrix that corresponds to the 2006 Division I college football
season, where each nonzero entry represents a game between two teams.
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Figure 1: Adjacency Matrix for 2006 Season

To exploit this natural block structure, we propose the use of the method
of stochastic complementation developed by Meyer [15]. This method pro-



vides a natural way to subdivide the original Markov chain into several
smaller chains, each of which would represent a single conference. The sta-
tionary distribution vector (or steady state vector) of each smaller chain can
be computed independently. These vectors can then be combined to produce
the stationary distribution vector of the original Markov chain. This process
involves the computation of a coupling matrix that represents yet another
Markov chain in which all of the teams in a particular conference are ag-
gregated into a single state. A benefit of this approach is that, in addition
to ranking the individual teams, the stationary distribution vector of the
coupling matrix provides a natural way to rank the conferences.

2 Overview of the method

The basic idea of our Markov chain approach to team ranking is straight-
forward. Each state in the Markov chain corresponds to one football team,
and transitions are only allowed between teams that have played each other.
Our ranking method can be thought of as an iterative procedure that occurs
at the end of the season. Suppose that we have a large number of college
football fans who (as improbable as this sounds) have no preference for which
team they support. Initially we distribute the fans equally among all avail-
able teams. At each iteration of our method, a fan can choose to either
remain with the same team or change to another team. The probability that
a fan remains with a given team should be higher for a winning team than it
is for a losing team. If a fan does not remain with the same team, it might
seem logical to assign the fan (with equal probability) to any of the teams
to whom the current team lost. Markov chain theory guarantees that if the
transition matrix is irreducible and aperiodic, then the iterative process will
always converge to a unique steady state vector [3, p. 222]. The percentage
of fans assigned to each team would therefore represent that team’s rating.
We sort the rating vector in decreasing order, and then each team’s position
in the sorted vector represents its ranking.

A potential problem with this approach is that if there are undefeated
teams, they would represent absorbing states in our Markov chain. In the
case where we had only one undefeated team, all of the fans would end up
assigned to that single team. Our ranking vector would not be particularly
useful, because the undefeated team would be ranked first, with everyone
else tied for second. We therefore make the following adjustment: we allow



transitions between teams who played each other in both directions.

The guiding principles that we used in developing our ranking method
are easy to describe qualitatively: the probability of a fan remaining with
a team should be higher for a winning team than for a losing team, and if
a fan changes teams, transitions to teams that defeated the current team
should occur with higher probability than transitions to teams who lost to
the current team. Determining the specific probabilities that should be used
became the central focus of our research.

Algorithm 1 describes our method for constructing the transition matrix.

Input: List of results of all games between a set of teams

Output: A stochastic matrix with transition probabilities based on
game results

Let N = maximum number of games played by any team;

Let p = a value in the interval (0.5, 1.0);

foreach Game k do
Let 7 = index of team that won game k;

Let j = index of team that lost game k;

Qj; = P;
aij =1—p;
end

foreach Team i do
ai; =N — > jti Qi
end
A = A/N;
Algorithm 1: Construction of transition matrix

Algorithm 1 assumes that the same two teams never play more than
once. In college football, exceptions to this can occur, particularly in large
conferences that have a conference championship game between the winners
of the two divisions after the regular season games, but before the bowl
games. Rematches could also occur in bowl games, but our interest was in
determining rankings before the bowl games began so that we could compare
our results to the official BCS standings that were used to select the top two
teams. In both 2006 and 2008, one conference championship game was a
rematch, and in 2007 there were 3 rematches. We dealt with rematches in
the following way: if two teams played each other twice with the same winner
each time, we made no adjustment to our transition matrix. If the teams



split the two games, then we reasoned that transitions between the two teams
should be equally likely in either direction, so we set a;; = aj; = 0.5 regardless
of the value of p that we were using.

3 Illustrative Examples

Example 1. Our first example demonstrates the construction of the transi-
tion matrix. It involves only six teams, so we do not deal with partitioning
the Markov chain into smaller chains. We assume that each team plays only 3
games, and the hypothetical results of these games are summarized in Table
1.

Team Wins Losses
1 4,5, 6 none

2 3 4,5
3 4,6 2
4 2 1,3
5 2,6

1
6 none 1,3,5

Table 1: Game Results for Example 1

To construct the transition matrix, we follow the steps below. For pur-
poses of this example we chose p = 0.8.

e Step 1: If 7 beats j, set aj; = 0.8 and set a;; = 0.2, producing the
following matrix:

0 0 0 02 02 02
0 0 02 08 08 0
0 08 0 02 0 02
08 02 08 0 0 O
08 02 0 0 0 02
08 0 08 0O 08 O

e Step 2. In this step we adjust the diagonal entries so that all row
sums in the matrix are constant. While teams never play themselves,
the diagonal entry represents the probability that a fan will stay with

5



the current team rather than changing to a new one. We accomplish
this as follows. For each row of the matrix, set a; = N — >2,.; a;j,
where NV is the total number of games played by each team. In this
example, N = 3. In the event that each team does not play the same
number of games, this value just needs to be large enough to ensure
that the diagonal entry is non-negative. In our experiments on actual
data, we used N = 13 since teams normally play 12 regular season
games, and a few teams also play a conference championship game.
After this adjustment, all rows sums are the same. We then divide the
entire matrix by N (3 in this example) to create a stochastic matrix.
Our matrix now looks like this:

0.8000 0 0 0.0667 0.0667 0.0667
0 0.4000 0.0667 0.2667 0.2667 0
0 0.2667 0.6000 0.0667 0 0.0667
0.2667 0.0667 0.2667 0.4000 0 0
0.2667 0.0667 0 0 0.6000 0.0667
0.2667 0 0.2667 0 0.2667 0.2000

Note: In the methods described by Keener, if 7 defeats j, then a;; is close
to 1, and aj; is close to zero. Here, we have those two entries transposed.
Since our method uses Markov chains, it bears some resemblance to the
methods used for Google’s PageRank algorithm as described in Langville
and Meyer [9, pp. 31-34]. In that work, a;; is set to some nonzero value
whenever there is a link from page ¢ to page j. In other words, page 7 is
recommending page j as an “authority” by virtue of its link. The analogy
here is that team ;7 “recommends” team i if j was defeated by 1.

The steady state vector for this Markov chain is given below:

(0.4515 0.0858 0.1240 0.1021 0.1741 0.0625)

According to these values, the teams should be ranked in the following
order: 1,5,3,4,2,6. This is consistent with the teams’ win-loss records.
Team 1 was undefeated and Team 6 was winless. Teams 5 and 3 both won
two games, but Team 5 lost only to Team 1. Teams 4 and 2 each had only
one win, but Team 4 defeated Team 2. Note that Team 2 actually defeated
a higher-ranked team (Team 3). We adopt the terminology used by Ali et
al. [1] and refer to this situation as a “violation.” It is virtually impossible
to develop a ranking system that avoids violations. Although we can define
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a relation on a set of teams according to who defeated whom, such a relation
is clearly not transitive. In this example, 3 beat 4, 4 beat 2, but 2 beat
3. Next, we present a series of examples that demonstrate how the method
of stochastic complementation can be used to rank conferences, as well as
teams.

Example 2. We assume that we have 10 teams divided into two 5-
member conferences. Each team plays every other team in their own confer-
ence, but only one team from the other conference, for a total of 5 games.
Our hypothetical results are given in Table 2.

West  Conference Non-conference | East Conference Non-conference
Wins Wins Wins Wins
1 2,3,4,5 6 6 7, 8,9, 10 none
2 3,4,5 7 7 8,9, 10 none
3 4,5 none 8 9, 10 3
4 5 9 9 10 none
5 none 10 10 none none

Table 2: Game Results for Example 2

We deliberately constructed this example so that within each conference,
there is a clear ordering (1 > 2 >3 >4 > 5)and (6 >7 >8 > 9 > 10)
so that we can focus our attention on comparing the two conferences. Using
Algorithm 1 with p = 0.80 we obtain the following transition matrix:

0.80 0.04 0.04 0.04 0.04 004 O 0 0 0
0.16 0.68 0.04 004 004 0 004 O 0 0
0.16 0.16 044 0.04 0.04 O 0 016 O 0
0.16 0.16 0.16 044 0.04 O 0 0 004 O
0.16 0.16 0.16 0.16 032 O 0 0 0 0.04

016 0 0 0 0 068 0.04 0.04 0.04 0.04
0 016 0 0 0 016 0.56 0.04 0.04 0.04
0 0 004 O 0 016 0.16 0.56 0.04 0.04
0 0 0 016 0 016 0.16 0.16 0.32 0.04
0 0 0 0 016 0.16 0.16 0.16 0.16 0.20

To exploit the natural block structure induced by the conference schedul-
ing, we partition A as follows:



A A
A= ( 11 12)
Ay Agy

where each submatrix in this example is 5 x 5. In general, only the diagonal
blocks need to be square, with the size of each conforming to the size of that
particular conference.

The stochastic complements are computed according to the formulas be-
low (see Meyer for further details):

St = An + Al — A22)_1A21

Sog = Agg + Ay (I — A11)71A12

For this example, the matrices turn out to be:

0.8279 0.0461 0.0412 0.0428 0.0421
0.1745 0.6994 0.0412 0.0428 0.0421
S =1 0.2327 0.2036 0.4594 0.0539 0.0504
0.1752 0.1691 0.1618 0.4518 0.0422
0.1752 0.1691 0.1618 0.1642 0.3298
and
0.7533 0.0633 0.0867 0.0497 0.0469
0.2156 0.6011 0.0867 0.0497 0.0469
Sae = [ 0.1711 0.1656 0.5800 0.0419 0.0414
0.2133 0.1867 0.2133 0.3400 0.0467
0.2133 0.1867 0.2133 0.1711 0.2156

For each stochastic complement, we can compute the unique station-
ary distribution vectors which satisfy v151; = vy, wvie = 1 and 1355 =
V9, e = 1, where e is a column vector of all 1’s. In this case, our results
are as follows:

vy = (0.5208 0.2310 0.1013 0.0866 0.0603 )

and

ve = (0.4461 0.2175 0.2041 0.0772 0.0551)

Note that in each vector, the entries appear in decreasing order, consistent
with the ordering that was determined by the results of the conference games.



Our primary interest here is in finding the coupling matrix C', whose entries
are given by ¢;; = v;A;je. In our example, the coupling matrix is:

C_(O.9478 0.0522)
—\0.1355 0.8645

and its stationary distribution vector is
w=(0.7221 0.2779)

In this simple example, the Western conference has a higher rating (0.7221)
than the Eastern conference (0.2779), which seems reasonable, given that in
head to head competition, Western conference teams won 4 of 5 games. In
the next couple of examples, we will leave the conference results unchanged,
but adjust the inter-conference results to see the effect upon the stationary
vector of the coupling matrix.

Example 3. In this example, the results of the conference games are
unchanged, but this time, teams from the Western Conference win 3 of the
5 inter-conference games as shown in Table 3.

West Conference Non-conference | East Conference Non-conference
Wins Wins Wins Wins
1 2,3,4,5 6 6 7,8,9, 10 none
2 3,4,5 none 7 8,9, 10 2
3 4,5 8 8 9, 10 none
4 5 none 9 10 4
5 none 10 10 none none

Table 3: Game Results for Example 3

In the interest of space we do not display the 10 x 10 stochastic matrix
or the stochastic complements. Adjusting the off-diagonal blocks as noted
above leads to the following new coupling matrix:

C_(O.9314 0.0686)
~ \0.1087 0.8913

whose stationary distribution vector is given by

w=(0.6132 0.3368)



Note that the Western conference still receives a higher rating than the
Eastern conference (0.6132 vs. 0.3868), but the difference is less pronounced
than we saw in Example 2.

Example 4. In this final example, we again only change the inter-
conference results as shown in Table 4.

West Conference Non-conference | East Conference Non-conference
Wins Wins Wins Wins
1 2,3,4,5 none 6 7,8,9, 10 1
2 3,4,5 none 7 8,9, 10 2
3 4,5 8 8 9, 10 none
4 5 9 9 10 none
5 none 10 10 none none

Table 4: Game Results for Example 4

Adjusting the off-diagonal blocks as noted above leads to the following
coupling matrix:

C_(0.8850 0.1150)
~\0.0657 0.9343

The new stationary distribution vector is given by
w = (0.3636 0.6364)

Note that in this case, the Eastern conference receives the higher rating
and is therefore ranked first. Although they only won 2 of the 5 games, their
2 wins came at the expense of the strongest teams in the Western conference.
So this method gives more weight to 2 wins against strong teams, as opposed
to 3 wins against weaker teams. We hesitate to over-analyze these examples,
whose primary purpose is to illustrate how the method works. In the next
section, we discuss our experiences in applying this method to actual data.

4 Experimental Results

We tested our ranking method using the complete game results for all 120
college teams in the Division I Football Bowl Subdivision (FBS) from the
2006, 2007 and 2008 seasons. (Note: in 2006, there were only 119 FBS
teams, as Western Kentucky did not join this subdivision until 2007.)
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Teams in the FBS occasionally play teams from lower divisions. We did
not have ready access to complete game data for the teams from the lower
divisions, and made the decision to discard game results involving non-FBS
teams. In most cases, the FBS teams won these games as expected, with
some notable exceptions. For instance, traditional power Michigan lost to
Appalachian State in 2007. We recognize that in a few cases, teams who lost
to non-FBS teams would benefit with a higher ranking than they would have
received had we considered these results. However, we felt that discarding
these games would have a minimal effect on our results, since for the most
part they affected only lower-ranked teams. Table 5 shows for each year
the number of games played by FBS teams against non-FBS opponents, the
number of losses to such teams, and the highest BCS rank of a team from
the FBS that had such a loss.

Year Games Losses Rank

2006 78 7 63
2007 80 9 29
2008 86 2 108

Table 5: Games involving non-FBS teams

Data for this study was obtained from an Internet site maintained by
James Howell [6]. We wrote C++ code to extract the information that we
needed from the raw data and to create the transition matrix. Matlab was
used for all of the matrix computations. The main focus of our effort was to
experiment with the values of the transition probabilities that we assigned
for wins and losses. In the examples above, we used p = 0.80. In our
experiments, we tested values of p between 0.55 and 0.95 in increments of
0.05. Note: a value of p = 0.50 would not be useful, because it would mean
that transitions between teams would occur in either direction with equal
likelihood. The resulting steady state vector would therefore be the vector of
all ones (normalized by the number of teams.) In other words, all 120 teams
would be ranked equally.

Google’s PageRank algorithm inspired one other variation that we tested.
In the PageRank algorithm, transitions between states (web pages) occur
primarily due to explicit links between pages. It is recognized, however, that
surfers sometimes do not follow links, but have the ability to jump to any
other web page simply by typing in a new URL. We wanted to incorporate
this idea into our ranking method in accordance with the old adage that
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“on any given day” any team is capable of defeating any other team. To
implement this, transition matrix A is constructed according to Algorithm
1. A second matrix G is created, with each entry equal to 1/N where N is
the number of teams. In matrix GG, a transition from any team to any other
team is equally likely. The final transition matrix is the weighted sum

aA+(1-a)G.

Langyville and Meyer [9, p. 41] report that in the case of ranking web pages,
Google gets the best results using a = 0.85. In our tests, the values of « that
we used ranged from 0.80 to 1.00 in increments of 0.05. For values of o < 1,
we could use p = 1 in the construction of matrix A since the incorporation
of the G matrix would prevent absorbing states.

Our rankings were based on the results of games played through the end of
the regular season, including conference championships for those conferences
that have them, but not the bowl games. We then counted the number of
violations, that is, the number of regular season games in which a game was
won by a lower-ranked team. Our assumption is that, given a choice between
two ranking methods, the one that produces the lower number of violations
is preferred.

The graphs shown in Figures 2, 3 and 4 summarize the performance of
the ranking methods that we tested on actual data from the 2006, 2007 and
2008 seasons. The horizontal axis in each graph shows the values of p that
we tested (before the rows of the matrix were normalized.) The vertical
axis shows the number of violations. Each graph includes 5 sets of data,
corresponding to the values of o that we tested.

We make two observations about our results from these three seasons.
First of all, the method generally produced fewer violations when lower values
of p were used. In each of the three years, the fewest violations were produced
using either p = 0.55 or p = 0.60. Secondly, it appears that using the G
matrix to allow transitions between all teams generally increased the number
of violations, although in 2006, the combination of p = 0.55 and a = 0.95
produced the best results.

Table 6 compares the performance of our best method for each year
against the final BCS standings as reported on Massey’s web site at the
end of the regular season but before the bowl games [11, 12, 13]. We report
the number of violations in the rankings produced by each method. We were
also interested in how accurately each method could “predict” the winners
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Figure 4: Test results from 2008 Season

Year Method Number Violations Number Bowl
of Games of Bowls Upsets
2006 p=0.55,a=0.95 682 107 32 11
BCS 107 11
2007 p=0.55,aa=1.0 686 132 32 10
BCS 128 14
2008 p=10.60,a=1.0 683 120 34 17
BCS 125 19

Table 6: Performance Comparison for Ranking Methods

of the bowl games that are played after the regular season games. If a team
wins a bowl game against a higher-ranked opponent, we refer to this as an
“upset.” It might appear that an upset is just another name for a violation,
but there is one difference — the results of the bowl games were not considered
when the rankings were calculated.

It appears that generally, our method produces comparable results to
the BCS rankings, but there is no clear pattern. Not surprisingly, both
methods did a better job on the regular season games than on the bowl
games. The number of violations was consistently in the range of 16-19%.
By contrast, the number of bowl upsets ranged from 31% to 56%. In 2006,
the two methods had the same number of violations and failed to predict
11 bowl games correctly (out of 32.) In 2007, our best method produced
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more violations than the BCS rankings, but we had fewer bowl upsets. In
2008, our best method produced fewer violations than the BCS rankings. In
that year, neither method did a particularly good job of predicting the bowl
game results, although we did slightly better than the BCS, predicting 50%
correctly (17 out of 34.)

We were also curious to compare the teams that would have been selected
to play in the BCS championship game based on our results. Tables 7, 8 and
9 list the top 5 teams as ranked by our best method, and also shows how
those teams fared in the official BCS rankings published at the end of the
regular season.

Team Our rank BCS rank
Florida 1 2
Ohio State 2 1
Southern California 3 4
Michigan 4 3
Louisville 5 6

Table 7: 2006 Team Rankings

Team Our rank BCS rank
Missouri 1 6
Virginia Tech 2 3
Georgia 3 5
Louisiana State 4 2
Ohio State 5 1

Table 8: 2007 Team Rankings

Team Our rank BCS rank
Oklahoma 1 1
Florida 2 2
Texas 3 3
Texas Tech 4 7
Utah 5 6

Table 9: 2008 Team Rankings

15



In 2006, our method would have selected the same two teams (Florida
and Ohio State) for the BCS championship game, although we had the top
two teams reversed, and as it turns out, Florida won the game. In 2008, the
correlation was even stronger — our method agreed with the BCS rankings on
the top three teams. In 2007, the results were quite different. Our top two
teams (Missouri and Virginia Tech) were ranked 6th and 3rd, respectively,
by the BCS. It is worth noting, however, that Missouri lost to Oklahoma in
their conference championship game. Prior to that loss, Missouri had been
ranked first in the BCS. Missouri’s only other loss was also to Oklahoma,
earlier in the season. In that light, the results of our ranking method are
more understandable — Missouri’s loss in the conference championship game
provided no new information.

We were curious to explore other ways of handling rematches in cases
where the same team won both games. This situation did not occur in
either 2006 or 2008. In 2007, however, there were two instances. In addition
to Oklahoma defeating Missouri twice, Central Florida also defeated Tulsa
twice. We decided to re-run our method (with p = 0.55 and a = 1.00) using
the following adjustment: rather than ignoring the conference championship
game, we simply doubled the probabilities in the appropriate locations in
the transition matrix. This resulted in a corresponding reduction in the
diagonal entry for each of the teams involved in these rematches, but the
value of the diagonal is no different than it would have been if the conference
championship game had not been a rematch. The adjusted results are shown
in Table 10.

Team Our rank BCS rank
Virginia Tech 1 3
Georgia 2 )
Louisiana State 3 2
Missouri 4 6
Ohio State 5 1

Table 10: 2007 Team Rankings Adjusted for Multiple Losses to Same Team

The revised rankings actually showed a very modest reduction in the
number of violations (132 to 131) with no change in the number of bowl
games predicted correctly. Missouri dropped from first to fourth, while Ok-
lahoma improved from 14th to 8th. One might argue that Oklahoma should
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be ranked ahead of Missouri by virtue of their two wins, but it is worth con-
sidering that Oklahoma lost two games in 2007 to Colorado and Texas Tech,
and that Missouri defeated both of these teams.

The final variation that we considered was to construct the transition
matrix using variable probabilities based on the final score of each game.
Our method for computing transition probabilities is similar to an approach
described by Keener. Assuming that Team ¢ loses to Team j by a score of s;
to s;, the general formula is given by

. Sj + A
Pij = Si+8j+2A

For the transition in the opposite direction, we used pj; = 1 — p;; as in
our earlier experiments. The idea is to have the transition probabilities close
to 0.5 for closely contested games. At the opposite extreme, in the case of
a blowout victory, we would want p;; close to 1 and pj; close to zero. The
purpose of the parameter A is to prevent transition probabilities of 0 and 1
in the event of a shutout. We experimented with several values of A, but
in these experiments we held a« = 1. In other words, we did not include
the possibility of direct transitions between teams that had not played each
other. Our results are shown in Figure 5.
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Figure 5: Test results using variable probabilities

No clear pattern emerges from analyzing the results from these three
seasons. In 2006 and 2008, A = 5 produced the best results, but in 2007,
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the fewest violations using variable probabilities were produced with A = 20
and A = 25. Table 11 compares the best results obtained for each year using
fixed or variable probabilities.

Year Method Violations Bowl Upsets

2006 fixed, p = 0.55,« = 0.95 107 11
variable, A =5 132 11

2007  fixed, p = 0.55,a = 1.0 132 10
variable, A = 20 148 7

2008  fixed, p = 0.60,a = 1.0 120 17
variable, A =5 144 13

Table 11: Performance of Variable Probability Methods

The use of variable probabilities always resulted in a higher number of
violations. Somewhat surprisingly, the variable probability approach did
result in fewer bowl upsets in both 2007 and 2008.

5 Conference rankings

In this section, we discuss the conference rankings produced by our ranking
method. We focus only on the method that gave the best results in the
previous section as determined by the number of violations. Of the 120 teams
currently in the Division 1 Football Bowl Subdivision, 116 of them belong
to one of 11 conferences. The remaining 4 teams (Army, Navy, Notre Dame
and Western Kentucky) are not affiliated with a conference. For purposes of
this analysis, we considered these four independents as their own conference,
bringing the total number of FBS conferences to 12.

To develop a ranking of the conferences in each of the three years that we
studied, we started with the transition matrix created with the combination
of p and « that had produced the fewest violations in the team rankings.
Using the method of stochastic complementation, we aggregated the original
120 teams (119 teams in 2006) into their respective conferences, producing a
12 x 12 coupling matrix. The coupling matrix is also stochastic, and our idea
was to use the steady state vector of the coupling matrix as the conference
rating vector.

It is important to understand the relationship between the steady state
vector of the original transition matrix (the team rating vector) and the
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steady state vector of the coupling matrix. Suppose that 7 is the team
rating vector, and that it is partitioned as follows:

7T:(7T1 o o T 7T12)

In this vector, m; is the subvector that contains the individual ratings
of the 12 teams in the Atlantic Coast Conference (ACC), 7y contains the
ratings of the 11 teams in the Big Ten Conference, and so on. The subvector
711 corresponds to the 9 teams in the Western Athletic Conference (WAC),
while 715 corresponds to the independent teams (3 in 2006, 4 in 2007 and
2008). Let & be the steady state vector of the coupling matrix. There is a
very simple relationship between £ and m, as described in Meyer. The entry
&, which is a single number corresponding to the j-th aggregated state, is
simply the sum of the elements in 7;! Theoretically, it would be possible to
perform the necessary computations without explicitly forming the stochastic
complements as we demonstrated in Example 2. The steady state vector for
the 120-state Markov chain could be computed and then partitioned to find
the steady state vector for the aggregated 12-state chain.

In practice, we found that the steady state vector for the coupling ma-
trix, on its own, did not provide satisfactory conference ratings. Since the
rating of each conference is the sum of the individual ratings of its teams,
this method would favor conferences with a large number of teams, such as
the Mid-American Conference (MAC) which has 13 teams, while penalizing
smaller conferences. The Big East and Sun Belt Conferences have only eight
members each. The solution to this problem was simple. We simply divided
each entry in the steady state vector by the number of teams in the corre-
sponding conference, so that the result could be thought of as the rating of
an average team from each conference. This produced much better results.
For instance, in 2008, we found that before normalization, the MAC was
ranked fifth, despite the fact that MAC teams had only won 14 of 44 games
against teams from other FBS conferences. After normalization, the MAC
was ranked tenth, although it was still ahead of Conference USA and the
Sun Belt Conference, both of which had even lower non-conference winning
percentages.

In Tables 12, 13 and 14, we report our conference rankings for 2006, 2007
and 2008. To provide some context, we included the non-conference win-
loss record for each of the conferences, although we only included games in
which both teams were from the FBS. The non-conference winning percent-
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age only provides a very rough guide to the strength of a conference. If the
strongest team from one conference defeats the weakest team from another,
that provides little insight into the relative strength of the two conferences.
We also included the bowl record for each conference, again recognizing that
this would only reflect the performance of the better teams in the conference.
The number of teams in a conference earning bowl bids would provide some
indication of the strength of a conference. Finally, we wanted to compare
our conference rankings to those determined by Jeff Sagarin as reported in
USA Today [18, 19, 20]. Sagarin uses two different methods for ranking con-
ferences. His Simple Average method (SA) computes the average rating for
each team in the conference. The Central Mean (CM) approach computes
a weighted average, with more weight given to teams in the middle of the
conference. For the most part, both methods give very similar results so we
report only the SA rankings here. Note: Sagarin’s rankings include teams
from the Football Championship Subdivision (formerly known as Division
[-AA) which we excluded here. Finally, the Sagarin rankings reported here
were determined using the results of the bowl games. We were unable to
find archived versions of his weekly rankings from earlier in the seasons that
we studied. We were curious to compare our method more directly, so we
recomputed our conference rankings by including both regular season and
bowl games. The last column in the table shows our updated rankings.

Conference Our Rank  Non-conf Bowl Sagarin Our Rank

before bowls  record record Rank after bowls
PAC 10 1 17-9 3-3 3 2
SEC 2 33-7 6-3 1 1
Big East 3 26-8 5-0 2 3
Big 10 4 27-10 2-5 4 4
Independents 5 17-11 0-2 8 6
Big 12 6 23-14 3-5 5 7
ACC 7 21-18 4-4 6 5
MWC 8 12-18 3-1 7 8
WAC 9 11-20 3-1 9 9
CUSA 10 13-28 1-4 10 10
MAC 11 6-38 1-3 11 11
Sun Belt 12 5-30 1-1 12 12

Table 12: 2006 Conference Rankings

20



Conference Our Rank  Non-conf Bowl Sagarin Our Rank
before bowls  record record Rank after bowls

SEC 1 31-8 7-2 1 1
Big East 2 23-11 3-2 4 4
ACC 3 26-15 2-6 5 6
PAC 10 4 19-10 4-2 2 2
Big 10 5 29-7 3-5 6 )
Big 12 6 29-11 5-3 3 3
MWC 7 15-16 4-1 7 7
Independents 8 12-24 0-1 8 9
WAC 9 7-20 1-3 9 10
Sun Belt 10 8-30 1-0 11 8
CUSA 11 10-30 2-4 10 11
MAC 12 12-39 0-3 12 12

Table 13: 2007 Conference Rankings

Not surprisingly, our post-bowl rankings correlate more closely with the
Sagarin rankings than our pre-bowl rankings. In reviewing our conference
rankings, it is clear that, to achieve a high ranking, the combined strength
of all of the teams in a conference is more important than having a few very
highly ranked teams. For instance, in 2008, the top two teams came from
the Big 12 (Oklahoma) and the SEC (Florida), but our method ranked these
conferences second and third. The highest ranked conference (according to
us) turned out to be the ACC which had 10 of its 12 teams earn bowl bids.
According to our method, the ACC had nine teams in the top 30, and the
lowest-ranked ACC team (Duke) was 61st. By contrast, the SEC had only
three teams in our top 30, and the lowest-ranked SEC team (Mississippi
State) was ranked 86th.

6 Conclusions

We believe that the method of stochastic complementation produces a vi-
able ranking method for college football teams. The number of violations
produced by our method compares favorably to the number of violations
produced by the actual BCS standings. Our method also provides a nat-
ural way to rank conferences and gives a theoretical justification for using
average team ratings to determine conference ratings. There are certainly
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Conference Our Rank  Non-conf Bowl Sagarin Our Rank
before bowls  record record Rank after bowls

ACC 1 23-11 4-6 3 1
Big 12 2 28-10 4-3 2 3
SEC 3 28-11 6-2 1 2
Big East 4 22-12 4-2 5 5
Big 10 5 23-12 1-6 6 7
MWC 6 19-10 3-2 7 6
PAC 10 7 12-17 5-0 4 4
WAC 8 11-19 1-4 9 8
Independents 9 14-26 1-1 10 10
MAC 10 14-30 0-5 11 11
CUSA 11 11-30 4-2 7 9
Sun Belt 12 10-27 1-1 12 12

Table 14: 2008 Conference Rankings

additional questions that could be investigated. Our experiments involved
three different parameters: the value of the fixed transition probability p,
the value of the weighting factor « for the random transition matrix G, and
the parameter A used in our computation of variable probabilities. Other
combinations of these parameters could easily produce variations on the ba-
sic method presented here that might lead to even better performance. In
particular, it would be of interest to develop other methods of computing
variable transition probabilities that account for factors such as margin of
victory and home field advantage.
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