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Abstract
We present several constructions for scheduling round robin tournaments. We
explain how to schedule a tournament with alternate home and away games
and point out some other interesting properties of the schedules. Finally,
we show what it means that two schedules are “different” and mention the
number of different schedules for the cases where the number is known.

1. Some small tournaments

Suppose we have four teams named 1, 2, 3, 4 and we want to schedule a
three-day round robin tournament with each team playing one game on each
day. All we need to do is to choose an opponent for team 1 on the first day
and another opponent for team 1 on the second day. All other games are
determined by these choices.

Say we choose the game 1−2 for Friday and 1−3 for Saturday. Of course,
the remaining teams must meet on both days—teams 3 and 4 on Friday and
teams 2 and 4 on Saturday. Then we have just one choice for Sunday, namely
games 1− 4 and 2− 3.

Friday Saturday Sunday

Game 1 1− 2 1− 3 1− 4

Game 2 3− 4 2− 4 2− 3

Table 1: Four team tournament
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Now let us try to schedule a five-day round robin tournament for six
teams. More simply, we may just say “round robin tournament of six teams”
as we always assume that each team plays one game each day. Because the
number of opponents for each team is always one less than the total number
of teams, the number of days (or rounds) is at least one less than the number
of teams—we actually need to show that it is possible to find a five-day
schedule. We can start as in the previous example and schedule for Round 1
games 1− 2, 3− 4, and adding the game of the two new teams 5− 6. Then
for Round 2 we schedule games 2 − 3, 4 − 5, 6 − 1 and for Round 3 games
1− 4, 2− 5, and 3− 6.

For Round 4 we have two choices for an opponent of team 1, either 3 or
5. Say we choose the game 1 − 3. But then team 5 cannot play a game,
since the only opponents they did not play are 1 and 3, which are scheduled
to play each other! Similarly, if we choose the game 1− 5, we have the same
problem with team 3—they could only play either 1 or 5, but these teams
are already scheduled to play another game.

Round 1 Round 2 Round 3 Round 4 Round 5

Game 1 1− 2 2− 3 1− 4 1− 3

Game 2 3− 4 4− 5 2− 5 5 − ?

Game 3 5− 6 6− 1 3− 6

Table 2: Incomplete six team tournament

With some effort, using the method of trial and error, or, more precisely,
an exhaustive (and exhausting!) search, we would find a schedule. An ex-
ample is in Table 3.

Round 1 Round 2 Round 3 Round 4 Round 5

Game 1 1− 6 2− 6 3− 6 4− 6 5− 6

Game 2 2− 5 3− 1 4− 2 5− 3 1− 4

Game 3 3− 4 4− 5 5− 1 1− 2 2− 3

Table 3: Six team tournament
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However, scheduling a round robin tournament of eight teams using an
exhaustive search could take several hours. Just try to count how many
possibilities we have. The first round can be selected at random. Say we
select games 1− 2, 3− 4, 5− 6, and 7− 8.

Round 1 Round 2 Round 3 . . . . . . . . . . . .

Game 1 1− 2 1− {3, 4, . . . , 8}

Game 2 3− 4 2− {4, 5, . . . , 8}

Game 3 5− 6 6− {7, 8}

Game 4 7− 8 forced

Table 4: Games 1− 3 and 2− 4 selected in Round 2

Round 1 Round 2 Round 3 . . . . . . . . . . . .

Game 1 1− 2 1− {3, 4, . . . , 8}

Game 2 3− 4 2− {4,5, . . . , 8}

Game 3 5− 6 6− {4, 7, 8}

Game 4 7− 8 forced

Table 5: Games 1− 3 and 2− 5 selected in Round 2

But then just for Round 2 we have six choices for team 1 (since one out
of seven possible opponents was already selected in Round 1). For Game 2
we can choose team 2, which can play one out of five opponents-if we have
for instance scheduled Game 1 as 1− 3, then 2 can play any of 4, 5, 6, 7, or 8.
If we choose 2 − 4, then 6 can select from two opponents, 7 and 8, and the
last game is then left for the two remaining teams. This gives 6 · 1 · 2 = 12
choices. If we choose 2− 5, say, then 6 can be matched with one of 4, 7, and
8. The same would apply if we choose 2− 7 or 2− 8. This gives 6 · 3 · 3 = 54
choices. Therefore, we have 66 choices just for Round 2. For each choice,
there are many different choices for Rounds 3 to 6, and only Round 7 is fully
determined by the previous rounds.
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It is obvious that we need a better method than trial and error. To
find one, we turn to the branch of mathematics called graph theory. This
relatively new field (dating back to 1930s) is often used for modeling many
types of applications, such as communication networks, traffic flows, task
assignments, timetable scheduling, etc. Graph theory has nothing in common
with graphs of functions. For us, a graph consists of a set of points, called
vertices (singular form vertex), and a set of lines, called edges. Each edge
joins two vertices. Some examples are given in Figure 1.

6
K 3,3

K G

Figure 1: Complete graph K6, complete bipartite graph K3,3, graph G
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Figure 2: Complete graph K6 and two different one-factors

A graph in which every vertex is joined by an edge to every other vertex
is called a complete graph. A complete graph can be viewed as a model of a
round robin tournament in a natural way. Each vertex represents one team,
and an edge joining two vertices, i and j, represents a game between the
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corresponding teams, i− j. If we assume that the number of teams is even,
say 2n where n is a natural number, then a round consists of a collection of
n edges such that no two edges share a vertex. Such a collection is called
a one-factor of the complete graph. An example for six teams is shown in
Figure 2. (If two edges in the same collection share a vertex j, then team j
would be scheduled to play two games in the same round, which we want to
avoid.)

Now we are ready to introduce a method that is widely used in tour-
nament scheduling. It was originally discovered in 1846 by Reverend T. P.
Kirkman [6], although he did not use it for tournament scheduling, and it
is probably the most popular method for tournament scheduling. When it
was first used for this purpose is not known. We call a tournament using it
a Kirkman tournament.

Construction 1 We label the vertices of the complete graph by the team
numbers. Place integers 1− 7 in order on a circle at a uniform distance and
put the vertex 8 in the center of the circle. For Round 1 we select the edge
joining 8 to 1 and all other edges perpendicular to the edge 8− 1. They are
2−7, 3−6, and 4−5. To select Round 2, we rotate them clockwise by 2π/7.
That is, we select the edge 8 − 2 and the perpendicular edges 3 − 1, 4 − 7,
and 5 − 6. In general, in Round k we select the edge 8 − k and all edges
perpendicular to it.

Figure 3: First three rounds in Construction 1

Obviously, each team plays exactly one game in each round. To see that
this construction yields a round robin tournament, we only need to convince
ourselves that every team plays every other team exactly once. First we
count the total number of games. In each of the seven rounds there are four
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games, which makes a total of 28 games. This is exactly the number of games
that we need to schedule—there are eight teams and each of them needs to
play seven opponents. This makes 56, but we must divide it by 2 since each
game was counted twice (a game k − j was counted once when we counted
team ks games and again when we counted team js games). We observed
that every team plays a game in each round. Therefore, either every team
plays every opponent exactly once, or some team misses one or more teams
and hence plays another one at least twice. So we only need to show that
each team plays every opponent at most once. Obviously, team 8 plays each
opponent exactly once, namely team j in Round j. Now if team k plays
another team, i, in round x, then the edge k− i is perpendicular to the edge
8− x. Similarly, if team k plays i in (another) round y, then the edge k − i
is perpendicular to the edge 8 − y. Because k − i is perpendicular to both
8− x and 8− y, it follows that 8− x and 8− y must be parallel or identical.
But no two edges of the form 8 − z are parallel in our construction, hence
x = y and team k plays i in just one round, namely Round x.

Construction 1 can be easily generalized for any even number 2n of teams.
This construction can be also described algebraically rather than geometri-
cally. We describe two views of the algebraic construction.

Construction 2 For this construction, we define for each edge its length.
Suppose we have an edge k−j and both k and j are less than 8. The length of
this edge is the “circular distance” between the vertices k and j. The number
of steps we need to take around the circle to get from k to j using the shorter
of the two paths between them. Algebraically, we define the length of the
edge k− j as the minimum of |k− j| and 7− |k− j|. If we suppose, without
loss of generality, that k > j, then the minimum is the smaller of k − j and
7 − (k − j). We also rename team 8 to ∞ (they are pretty similar anyway)
and we define the length of any edge ∞−k as ∞. This definition of the edge
length is consistent with the definition of edge lengths of the other edges,
since ∞− k = ∞ for any finite k.

Now we observe that in Round 1 the edge 2−7 has length 7−(7−2) = 2,
edge 3−6 has length 6−3 = 3, and 4−5 has length 5−4 = 1. Hence we have
three different lengths, 1, 2, and 3. The remaining edge ∞− 1 is of length ∞
and all four lengths are different. We also observe that no two vertices on the
circle can be at distance more than 4, because one of the two paths between
them is always shorter than four steps. Next we can construct Round 2 from
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Figure 4: First three rounds in Kirkman tournament

Round 1 by taking each game (i.e., edge) and adding 1 to each team number
except team ∞. (In fact, we can add 1 to ∞ as well, assuming naturally
that ∞+ 1 = ∞.) For doing this we need to use “wrap around arithmetic.”
If the finite number we receive exceeds 7, we subtract 7 to get back within
our range. Game 2 − 7 then becomes game 3 − 1 instead of 3 − 8 and the
length of the corresponding edge is 3−1 = 2, which is the same length as the
length of the edge 2− 7. Game (edge) 3− 6 becomes 4− 7 and the length is
7− 4 = 7, the same as of 3− 6. Game 4− 5 becomes 5− 6 of length 1, same
as for 4 − 5. Finally, the edge ∞ − 1 becomes ∞ − 2, but the length here
is defined as ∞. Hence, we again have four different lengths, 1, 2, 3,∞. In
general, in Round 1+ i we add i to each vertex (team number). It is easy to
observe that an edge k− j of Round 1 and an edge (k+ i)− (j+ i) of Round
1 + i have the same length, because (k + i)− (j + i) = k + i− j − i = k− j.
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Figure 5: First two rounds in a Steiner tournament

This approach can be used to construct a different schedule. For Round
1 we choose edges ∞ − 1 of length ∞, 4 − 3 of length 1, 7 − 5 of length
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2, and 2 − 6 of length 3. Then for Round i we add i − 1 to each vertex
as in Construction 1. We again have four different lengths and therefore
the schedule is covering each game exactly once. A tournament using this
schedule is often called a Steiner tournament, since it can also be constructed
using so-called Steiner triple system.

2. Tournaments for any even number of teams

To make sure that this construction gives a good schedule where every
team plays every other exactly once, we repeat arguments as in Construc-
tion 1. This time we discuss the case for any even number of teams, 2n. We
generalize the edge length used in Construction 2 as follows. For an edge
∞− i, the length is defined as ∞. For an edge k − j, where j < k < ∞, the
length is the minimum of k− j and 2n− 1− (k− j). Obviously, the possible
lengths then are 1, 2, . . . , n− 1,∞.

Theorem 3 Let K2n be the complete graph on 2n vertices 1, 2, . . . , 2n−1,∞
and F1 a one-factor of K2n in which every edge length 1, 2, . . . , n − 1,∞
appears exactly once. For i = 2, 3, . . . , 2n − 1 construct a one-factor Fi

from F1 by adding i − 1 to all vertices 1, 2, . . . , 2n − 1. Then the collection
F1, F2, . . . , F2n−1 contains every edge of K2n precisely once.

Proof. Each of the 2n − 1 one-factors (rounds) contains n edges, which
makes a total of n(2n − 1) edges. This is exactly the number of edges in
the complete graph with 2n vertices. To show that each edge is used exactly
once, it is again enough to show that none is used more than once. First we
show that in the complete graph with 2n vertices there are exactly 2n − 1
edges of each given length l, where l is any of 1, 2, . . . , n − 1,∞. For each
vertex k and each fixed length l (where both k, l < ∞) there are two edges of
length l incident with k, namely the edges k− (k+ l) and k− (k− l), which
gives 2(2n−1) edges. But every edge was counted twice—the edge k−(k+ l)
was counted once when we looked at the edges incident with vertex k and
again when we counted the edges incident with vertex (k + l). Therefore,
there are 2n − 1 edges of length l. For length ∞, there are also precisely
2n− 1 edges, each one joining ∞ to one of the vertices 1, 2, . . . , 2n− 1.

We already have shown that the number of edges of any length is the
same as the number of one-factors. We still need to show that each length is
used in any one-factor exactly once. First we show that each length is used
at least once. Suppose that it is not the case and length l is not used in
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Fi. By our assumption, there is an edge of length l in F1, say (k + l) − k.
Because we obtained Fi by adding i−1 to all vertices of F1, we have the edge
(k+ l+ i−1)− (k+ i−1). But the length of this edge also l and hence every
length is present. Next we want to show that every length is used at most
once. If a length l is used more than once, another length must be missing,
which we have just shown cannot happen. Therefore, every length is used
in each one-factor exactly once. Because the number of edges of any length
is the same as the number of one-factors, it follows that each edge is used
precisely once.

A specific version of our theorem producing the Kirkman tournament for
2n teams is given here.

Corollary 4 Let K2n be the complete graph on 2n vertices 1, 2, . . . , 2n −
1,∞ and F1 a one-factor of K2n with edges ∞ − 1 and k − (2n + 1 − k)
for k = 2, 3, . . . , n. For i = 2, 3, . . . , 2n − 1 construct a one-factor Fi

from F1 by adding i − 1 to all vertices 1, 2, . . . , 2n − 1. Then the collection
F1, F2, . . . , F2n−1 contains every edge of K2n precisely once.

Earlier we promised two different views of the algebraic construction.
Here is the other one.

Construction 5 We use the same Kirkman tournament schedule as in Con-
struction 2 and observe that in Round 1 the sum of the team numbers (not
counting ∞ and its opponent) playing each other is 9 = 7 + 2 = 7 + 2 · 1,
in Round 2 it is either 4 = 2 · 2 (remember in Round 2 game 2− 7 becomes
3−1) or 11 = 7+4, but 4 = 7+2 ·2. In Round 5 we have games 4−6, 7−3,
and 1−2 which give the sum equal to 10 = 2 ·5 or 3 = −7+2 ·5. In general,
in Round j the sum becomes 7δ + 2 · j where δ = −1, 0, or 1. This is true
for all Kirkman tournaments with 2n teams. Round j in such a tournament
consists of the game ∞− j and the games whose sum is (2n− 1)δ + 2j with
δ = −1, 0, or 1.

3. Some more tournament properties

If every team has its own home field, it is desirable to schedule the tourna-
ment in such a way that the home and away games for every team alternate
as regularly as possible. We say that a team has a break in the schedule when
it plays two consecutive home or away games. The most balanced schedule
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is one with no breaks. However, it is impossible to have a schedule in which
three or more teams have a schedule with no breaks. Suppose that there
are at least three such teams. Then either at least two of them start their
schedules with a home game, or at least two of them start with an away
game. Without loss of generality we can assume that two start with a home
game. But since both of them have no breaks, they always play home at the
same time and therefore can never play each other.

A Kirkman tournament has the nice property that its rounds can be re-
ordered so that two teams have no breaks while all other teams have exactly
one break each. We can show this using our example for eight teams. Use
the convention that in a game k− j the home team is j and schedule Round
1 as ∞ − 1, 7 − 2, 6 − 3, 5 − 4. Round 2 is then obtained from Round 1
by adding 4 to each team number (rather than 1 as in Construction 2). In
general, Round (i + 1) is obtained from Round i by adding 4 to each team
number and the games involving team ∞ alternate ∞ as the away and home
team. Then teams ∞ and 4 have no breaks, teams 1, 2, and 3 have one home
break each and teams 5, 6, and 7 have one away break each. If we want to be
fair and have one break for each team, we can schedule the game between ∞
and 4 in the Round 7 as 4−∞ rather than ∞−4. This also works in general
for 2n teams, and Round i + 1 is then obtained from Round i by adding n
to each team number.

This construction has one interesting property. When we want to schedule
a tournament for an odd number of teams, 2n− 1, we can take any schedule
for 2n teams and pick a team j to be the dummy team. Whatever team is
scheduled to play the dummy team in Round i then is said to have a bye in
that round. The schedule above has the property that when we select team
∞ to be the dummy, then no team has a break in the schedule. Surprisingly,
this is the only schedule for odd number of teams with this property, as
discovered by Mariusz Meszka and the author [4], who also proved in that
for any even number of teams there exists a unique schedule in which every
team has one bye and no break.

Another important aspect of round robin tournaments is the carry-over
effect. When there are games k − j in Round i and k − t in Round (i + 1),
we say that team t receives carry-over effect from team j in Round (i + 1).
If we look at a Kirkman tournament as described in Construction 2, we
can see that team 1 receives carry-over effect from team 6 in five rounds,
namely in Rounds 2 through 6, and once from team ∞ in Round 7 (there is
of course no carry-over effect in Round 1). That is, team 1 plays six times
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Figure 6: Rounds 1, 2, and 5 in Construction 5 of the Kirkman tournament

during the tournament against the team that played team 6 in the previous
round. This may be an advantage or disadvantage, depending on whether
team 6 is the best or worst team in the tournament. Similarly, all teams
except ∞ receive the carry-over effect from the same team five times, while
∞ receives it in each round from different team. This is due to the rotational
structure of Kirkman tournament and the special role of ∞ in it. There are
tournaments that have perfect carry-over effect, that is, every team receives
the carry-over effect from each other team at most once. However, such
tournaments are known to exist only when the number of teams is either a
power of two (see [7]), 20, or 22 (see [1]). Unfortunately, the tournaments
with perfect carry-over effect typically have very bad break structures and
balancing both properties is difficult. Some examples of leagues where both
properties are well balanced can be found in [2].

Construction 6 (Another Schedule) If we want to find a schedule for eight
teams different from the two schedules described in Constructions 1 and 5,
we may think of a different tournament format. We split the teams into
two divisions, East and West. First we play four rounds of interdivisional
games between teams from different divisions. After that, we play three more
rounds of intradivisional games.

The intradivisional part is now easy, as we already know how to schedule
a tournament for four teams. A schedule for the interdivisional rounds is not
difficult either. We denote the teams W1,W2,W3,W4 and E1, E2, E3, E4.
Then for Round 1 we choose the gamesW1−E1,W2−E2,W3−E3,W4−E4.
For Round 2 we choose W1− E2,W2− E3,W3− E4,W4− E1 (note that
E4 wraps around to E1), for Round 3 we choose W1−E3,W2−E4,W3−
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naments

E1,W4 − E2, and finally for Round 4 we have the remaining games W1 −
E4,W2 − E1,W3 − E2,W4 − E3. This part of our schedule is called a
bipartite tournament and the graph we use to model it is called the complete
bipartite graph K4,4—its vertex set consists of two disjoint sets of size four,
W and E, and there are edges between every two vertices belonging the two
different sets, while no edge joins any vertices within the same set.
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One may now ask a natural question. The one-division 8-team tourna-
ment and the two-division 8-team tournament look different, but are they
really? Maybe if we rename the teams in our two-divisional tournament, and
re-order the rounds, we get the same tournament. If not, then the tourna-
ments are structurally different, or, as we say in graph theory, nonisomorphic.
In general, to distinguish whether two tournaments are isomorphic is diffi-
cult and we are not going to investigate it in full generality. However, we can
convince ourselves that the two-divisional tournament is different from the
one-division tournaments. It takes some time, but we can show that in the
first tournament it is impossible to split the teams into two divisions such
that there are four rounds with only interdivisional games and three rounds
with just intradivisional games. Even Kirkman and Steiner tournaments are
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nonisomorphic. We can convince ourselves that any two rounds of a Kirkman
tournament when put together as graphs give a cycle of length eight, while
in a Steiner tournament the first two rounds give two disjoint cycles of length
four.

On the other hand, no matter how we schedule a tournament for four
teams, the result is always the same. That means we can always rename the
teams in one of the tournaments (mathematically speaking, renaming is what
we call “finding an isomorphism”) and then possibly re-order the rounds in
that tournament to obtain the other one. It would take a lot of time but
you can show with paper and pencil that there is only one tournament for
six teams. That is, all tournaments for six teams can be obtained by re-
ordering one particular tournament. Which means that you can schedule
this “structurally unique” tournament in many different ways (exactly in
5!3! = 720 ways, if the order of games played on a particular day matters).

To illustrate how difficult it is to find whether two tournaments are iso-
morphic, we list the number of nonisomorphic tournaments for small num-
ber of teams: There is only one for four and six teams, there are 6 tour-
naments for eight teams, 396 tournaments for ten teams, and 526, 915, 620
tournaments for twelve teams. This number was found with the help of a
sophisticated computer program (based on hill climbing algorithm) by Jeff
Dinitz, David Garnick, and Brendan McKay in 1994 [3]. In 2008, Petteri
Kaski and Patric Österg̊ard [5] used another algorithm to show that there
are 1, 132, 835, 421, 602, 062, 347 nonisomorphic tournaments with fourteen
teams! Beyond fourteen teams, the numbers are so large that only a rough
estimate is known, and it is unlikely that even with the most powerful com-
puters an exact number for sixteen teams would be determined in a near
future.

There have been too many papers published about various aspects of
round robin tournaments to be listed here. We refer the reader to a survey
on tournament scheduling in [2].
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