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Carbon dioxide (CO2) and other greenhouse
gases, released into the atmosphere from human
activities, have altered Earth’s natural climate.
Naturally produced greenhouse gases have a dif-
ferent chemical signature from the man-made
variety. The increasing concentration of CO2 in
the atmosphere, correlated to human industrial
activities, has been shown through modeling
studies and a host of empirical evidence to cause
a large fraction of the warming trend recorded
in the last decades. Moreover, larger and more
rapid future changes are expected in the absence
of significant mitigation.

The uncertainty of climate modeling: all the
detailed topography and heterogeneous physical
processes in this aerial image from Colorado is
reduced to a single grid point in the typical reso-
lution (e.g. 100km×100km) for a global climate
model. (NCAR Digital Library)

Understanding the interactions among differ-
ent components of the Earth’s physical system
and the influence of human activities on the en-
vironment, has progressed immensely, but it is
far from complete. The qualitative assessment of
global warming needs to be buttressed by more
quantitative and precise estimates of different
impacts of climate change on natural, social and
economic systems.

A dramatic cumulonimbus cloud with a rain
shaft. This thunder storm in Colorado is
“weather”. However, based on the sparse veg-
etation one can infer that the “climate” for this
area involves limited rainfall. (NCAR Digital
Library)

Quantitative assessments of the impacts of fu-
ture climate change are not straightforward and
require new tools in mathematics and statis-
tics providing not only estimates on climate
impacts but also companion measures of uncer-
tainty. The Intergovernmental Panel on Climate
Change (IPCC) 2007 report highlights uncer-
tainty quantification as one of the most pressing
research issues in determining our overall ability
to propose how human activities can be mod-
ified to mitigate our effects on natural climate
and how we can adapt to unavoidable changes.

Climate and weather
Climate refers to the distribution of the state of
the atmosphere, oceans, and biosphere at time
scales of decades, centuries, millennia. It can
be viewed as a forced/diffusive system, with
very complex and long-range interactions be-
tween the oceans, the land mass, and the atmo-
sphere. Examples of climatic events are the ”Ice
Ages”, droughts and the current global warming.
Weather, on the other hand, refers to the state
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of the above coupled systems at much shorter
spatio-temporal scales. Its behavior can be very
sensitive to initial conditions and so is often dif-
ficult to predict. Examples of weather events are
more familiar to us: storm systems, hurricanes
or tornados. The distribution of weather events
over a long period of time and at a given location
is the climate.
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Atmospheric concentrations of Carbon Dioxide
over the last 10,000 years (large panel) and since
1750 (inset panel) showing the rapid increase due
to increased consumption of fossil fuels. (See
IPCC Fourth Assessment Report)

Projections of future climate are based on the
output of atmosphere/ocean general circulation
models and are used to simulate conditions in the
future based on projected levels of greenhouse
gases. These models are physically based, com-
puter codes that couple the dynamics among the
ocean, the atmosphere, sea ice and land along
with biogeochemical processes that affect con-
centrations of CO2. It may come as a surprise
that the essential physics for these models is
rarely debated, drawing on classical fluid dynam-
ics and thermodynamics. However, due to the
finite resolution of the models the exact physical
processes must be approximated. Due to their
size and complexity, most climate system mod-
els can not achieve a resolution much smaller
than regions of 100 kilometers square. The re-
sult is that the model must account for physical
processes that are not resolved, i.e. explicitly
simulated, such as cloud formation and com-
plex topography. These unresolved processes
still have a strong influence on climate at large
scales. The technique of representing unresolved
processes is termed a parameterization and is an

active area of climate research. Not surprisingly,
parameterizations are also a key factor in model
uncertainty.

Snapshot of a high resolution (∼40km) simula-
tion of the global atmosphere using the NCAR
Community Atmosphere Model (CAM) anima-
tion

Dynamical systems
To an applied mathematician, a climate model
can be viewed as a discrete dynamical system
with some additional variables entering as exter-
nal forces. The state of the atmosphere, ocean
and other components at a time t are repre-
sented by a large state vector, say xt, of three
dimensional fields and the external “forces”, col-
lected together as another vector yt, including
the changes in CO2 over time. A mapping F
takes the state from time t to t + 1. It uses both
the current state of the climate system, xt and
the values of the external forces, yt to produce
a dynamical result for the next time step. Con-
cisely, xt+1 = F (xt,yt). Here the individual
time steps of the system can be interpreted as
generating weather while long term averages or
long term probability distributions of the state
vector reflect the climate of the system. Sup-
pose that a more accurate physical description
of xt+1 involves a more detailed or higher res-
olution state, say x∗

t , and accordingly for some
G, xt+1 = G(x∗

t ,yt) gives a better forecast at
t + 1. The parameterization problem from the
geosciences is to express this dynamical rela-
tionship in terms of the xt vector. This process
is also known as closure and presents interest-
ing new mathematical problems for geophysical
systems.

At the same time as climate models have become
ever more complex, efforts are made to pro-
duce simpler dynamical systems that are more
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amenable to mathematical analysis. For exam-
ple, energy balance models are used to gain an
understanding of the basic dynamics climate sci-
entists and mathematicians are also involved in
proposing ways to capture important unresolved
physics in a consistent way: up-scaling and clo-
sure techniques are used to produce coarse mod-
els that can convey the unresolved physics in a
consistent way. Recently, stochastic techniques
are being applied to capture (or close) unresolved
or poorly understood phenomena in such a way
that the models have a statistical behavior that
is consistent with observations.

Elevations for the Western US at 4km and
128km resolution. The coarser resolution shown
is a typical scale for climate model experiments
and the finer scale is at the limits of historical
observational climate data sets.

Numerical simulations
A numerical experiment with a climate model
involves specifying the initial state, x1, and the
forcing series yt and then stepping the system
forward many time steps. The intriguing aspect
of climate modeling is that although the model
is formulated as a differential or short term map-
ping, the climate produced by the model is the
long term distribution (including averages) of
the state vector. The scientific challenge in

climate modeling is to represent the physical
processes of the atmosphere and ocean at time
scales on the order of minutes but produce re-
alistic simulations of the Earths climate when
variables, such as surface temperature or rain-
fall, are averaged over 20 to 30 years. Typically
a state-of-the-art climate model when run on a
super computer can simulate several “model”
years for each “wall clock” day, thus runs of a
model extending 100 years or more are limited
by available computer resources. The computa-
tional operations increase roughly by a factor of
16 when the grid size is cut in half and this limit
places practical constraints on any significant in-
crease in climate model resolution. For example,
moving from a 128km grid to a cloud resolving
scale of 4km would increase the amount of com-
putations by a factor of more than 106.

Climate model uncertainties
There exist large sources of uncertainty in con-
structing and applying climate models. These
can be classified into initial conditions, boundary
conditions, parameterizations and model struc-
ture. Initial conditions are often dismissed as
a source of uncertainty in climate projections
since the results from model runs are usually av-
eraged over decades. However, there still may be
some uncertainty introduced for shorter climate
predictions due to the initial state of the deeper
layers of the oceans and the slow time scale parts
of the carbon cycle.

Cumulus clouds over the South Pacific, (NCAR
Digital Library)
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Uncertain forcings Boundary condition uncer-
tainty arises because the model experiments,
which are otherwise self-contained, rely on inputs
(or forcings) that represent external influences.
Natural external influences are the solar cycle
or volcano eruptions. Man-made influences for
climate change studies are primarily greenhouse
gas emissions, whose future behavior depend on
unpredictable socio-economic and technological
factors. Given the uncertainty for future hu-
man activities, simulations of future climate are
termed projections rather than predictions to
denote their dependence on a particular scenario
of human activity.

Subgrid scale uncertainty Parameter and struc-
tural uncertainties are intrinsic to numerical cli-
mate models. Because of limited computing
power, climate processes and their interactions
can be represented in computer models only up
to a certain spatial and temporal scales (the two
being naturally linked to each other).

Observed mean winter surface temperatures and
those simulated from the NCAR Community Cli-
mate System Model (CCSM). These data are

available as part of CMIP3.
The influence of processes existing at finer scales
than the model grid cells depend on the tech-
nique of parametrization or mathematical clo-
sure described above.

Climate model bias: the CCSM simulated cli-
mate minus the observations.

For example, the percentage of cloud cover and
the type of clouds within a model grid cell are
responsible for feedbacks on the large scale quan-
tities, determining how much heat penetrates the
lower layers of the atmosphere and how much is
reflected back to space. However, the formation
of clouds is an extremely complex process that
cannot be measured empirically as a function
of other large scale observable (and/or repre-
sentable in a model) quantities. Thus the choice
of the parameters controlling the formation of
clouds within the model cells has to be dictated
by a mixture of expert knowledge and goodness-
of-fit arguments.

Parameter uncertainties have started to be sys-
tematically explored and quantified by so-called
perturbed physics ensembles (PPE), sets of sim-
ulations with a single model but different choices
for various parameters. The design of these
experiments and their analysis provide fertile
ground for the application of statistical model-
ing. Because climate model runs are computa-
tionally intensive, part of the challenge is to vary
several model parameters simultaneously using
a limited set of model runs. (See climatepredic-
tion.net for a large and particularly innovative
PPE based on individuals running parts of an
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experiment on personal computers.) Bayesian
statistical approaches are often preferred because
they can also incorporate expert judgment in the
prior formulation.

Uncertainty due to model construction Struc-
tural uncertainty is introduced by scientific
choices of model design and development. There
are sources of variation across model output
that cannot be captured by parameter perturba-
tions, and can introduce a larger degree of inter-
model variability than any PPE experiment.
The model output collected under the Climate
Model Intercomparison Project (CMIP) 3 has
provided the basis for all the future projections
featured in the last IPCC report. Formal sta-
tistical analysis of model output, either coming
from multi-model ensembles such as CMIP3 or
from PPE experiments is crucial to quantifying
the uncertainties caused by models approxima-
tions. Unfortunately, the most popular use of
these ensembles is to compute simple descriptive
statistics: model means, medians and ranges.
These may not be appropriate because the given
ensemble may not be representative of the super-
population of all possible models. For example,
models that are currently derived from different
climate groups may share a common origin and
so inherit subtle structural similarities. Build-
ing mathematical tools that can recognize these
dependencies among models is a difficult but
challenging problem. Closely related to this is-
sue is that some models may be “better” than
others in simulating climate leading to methods
for weighting models differently when synthesiz-
ing their future projections.

A cluster analysis of 19 climate models based on
their spatial biases in simulating winter (DJF)
and summer (JJA) mean surface temperature.
Points joined by dashed lines are models from the
same group (e.g. 7,8,9 are from NASA/Goddard
Institute for Space Studies.) The five circled
points are a “space-filling” subset of the 19 mod-
els. (Courtesy of M. Jun, Texas A&M)

Data assimilation
The blending of data and models has been used
since the early days of weather forecasting. In
the last 25 years estimation and statistical meth-
ods have been introduced to weather prediction
producing significantly better forecasts by han-
dling the inherent error of models and data in a
more consistent way.

Modeled vs. observed cloud changes
July 2007 minus July 2006

CAM Total Cloud Changes MODIS Terra Cloud Changes

Sea Ice Area

Fraction Changes

Unlike CAM, MODIS shows variability in the cloud response over open water.

Modeled vs. observed cloud changes
July 2007 minus July 2006

CAM Total Cloud Changes MODIS Terra Cloud Changes
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Unlike CAM, MODIS shows variability in the cloud response over open water.

The difference in cloud cover over the Earth from
a North pole projection between July 2007 and
July 2006. Between these two years there was
a large decrease in the sea ice extent. There is
a corresponding change in the cloud cover over
open ocean in the observations (MODIS) but the
model (CAM) results do not produce this change
in clouds and suggest some problems with cloud
formation over polar oceans. To make this com-
parison, observational data must be assimilitated
into CAM to match the model state to a partic-
ular period of observation. (Research and figure
(Jen Kay, NCAR)
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These methods, known collectively as data as-
similation, are especially useful when the data
is sparse, both in space and in time. A new
area in climate model development is diagnos-
ing problems in their formulation based on how
well they predict weather. This is in contrast to
more traditional methods where long term aver-
ages or other statistics from a model simulation
are compared to the statistics of observations.
Specifically, F is used to make a short term pre-
diction and the results are compared to what
was actually observed. The differences can then
be used to check or modify parameterizations or
other components of the model. Another strat-
egy is to assimilate observations with a model
over a period of time and then compare the
model state to other atmospheric measurements
withheld from the assimilation process. The
figure given above considering cloud cover over
open ocean and its relationship to sea ice is an
example of this method.

The blurring of the distinction between climate
models and weather forecasting models is a new
opportunity for theory on the relationship be-
tween short term behavior of F and its long
term average properties. Climate and weather
are inherently nonlinear, and as a result also
have non-Gaussian distributions. Assimilation

of data and models with strong nonlinearities
and non-Gaussianity pose special mathemat-
ical challenges as they differ from the stan-
dard linear formulation of the Kalman Filter.
Nonlinear/non-Gaussian methods of data assim-
ilation are intended to provide better forecasts
that track complex geophysical processes, such
as cloud cover or sea ice extent. These can im-
prove the initial conditions and boundary condi-
tions used as a starting point in climate model
simulations and aid in model development.
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Predictions of a particle trajectory in a
nonlinear/non-Gaussian test problem. Bench-
mark particle filter (blue) and the Diffusion Ker-
nel Filter (blue circles) and the traditional data
assimilation method, the extended Kalman Filter
(red). True path in black. (Research and figure,
P. Krause and J. M. Restrepo, U. Arizona)
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