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How is information stored and processed across different areas of the brain? This is a fundamental question in neuroscience; theoretical and
computational efforts to answer it face significant challenges because of the vast hierarchy of spatial and temporal scales in brain dynamics.
From a mathematical point of view, the issue is fundamentally one of dimension reduction—from very high-dimensional network dynamics to
relatively low-dimensional dynamics in terms of relevant dynamical observables that capture/encode the essential information in sensory inputs.

For the visual cortex, information-theoretical methods indicate that neurons may respond almost independently, with little pairwise correla-
tion. In some cases, then, a very low-dimensional representation of the visual information—namely, the firing rates of voltage spikes of indi-
vidual neurons—is possible. It is difficult to understand, however, how any rate code, whether for a single neuron or a population of neurons,
can decode/encode such complex perceptual phenomena as association, generalization, and contextual modulation.

In an alternative approach, proposed by Hebb, information is represented by synchronous activity distributed across many neurons; the prop-
agation of information among the regions of the brain manifests itself as spatiotemporal patterns in the cortex. In temporal binding theory, this
notion is elaborated to provide a framework for many perceptual phenomena, in which perceptually related features are linked through corre-
lated firing among subpopulations of neurons.

On the level of rate coding, we have constructed an efficient representation of network dynamics in primary visual cortex (V1) with strong-
ly fluctuating conductances and voltages. In the cat and monkey, cellular responses in V1, such as orientation preference, are arranged in regu-
lar patterns across the cortex. This suggests a coarse-grained construction: Some neuronal subpopulations can be effectively represented by
coarse-grained patches that are sufficiently large to contain many neurons, yet sufficiently small that regular response properties of the individ-
ual neurons within a patch are approximately the same.

By extending concepts from nonequilibrium statistical physics to the network dynamics of V1, we have developed theoretical frameworks for
studying these coupled homogenized, coarse-grained patches. We started with such “microscopic” networks of homogeneously coupled neu-
rons within a coarse-grained patch. Without introducing any new parameters, we showed that, by neglecting correlations among neurons with-
in the patch, it is possible to derive Boltzmann-like kinetic equations that govern the evolution of a one-particle (i.e., one-neuron) probability
density function. As with derivations of hydrodynamic equations from the Boltzmann equation for molecular motion in fluids, further reduction
to moment equations is possible via a moment closure based on the maximum-entropy principle. For example, for a network of excitatory neu-
rons in the small synaptic time-constant limit σ << 1, the moment equations become

(1)

with U(μ,v) ≡ [(v - εr) + μ(v) (v – εE)]τ, where ρ(v) is the probability density function for finding a neuron whose membrane potential is v;  μ(v)
is the conditional moment of conductance; τ is the membrane time-constant; and εr and εE are constants representing the resting and reversal
potentials for neurons, respectively. Here, g– describes the mean activity of the network and σg

2 characterizes the fluctuation strength of the net-
work response; g–, σg

2, and the firing rate m(t) can be self-consistently determined in (1) by the total probability flux across the firing threshold
VT of the membrane potential.

We have demonstrated that this kinetic theory (extended to include inhibitory neurons and interactions amongst coarse-grained patches) cap-
tures very well the effects of large fluctuations in the dynamical response of neuronal networks, with high numerical efficiency and surprising
accuracy. We have applied this kinetic theory to suggest that a fluctuation-controlled criticality underlies the orientation-tuning dynamics of V1,
for which the near-criticality network dynamics is characterized by near-bistability and a rapid gain function induced by large synaptic fluctu-
ations.

We have also considered how information can be encoded beyond simple rate coding. In our large-scale (~106 neurons) computational model
of spatiotemporal dynamics of V1, it appears that correlated firing events of particular neuronal ensembles play a significant role in realistic
dynamical regimes for phenomena in V1. The cortical phenomena we have examined are (a) spontaneous, ongoing coherent cortical activity and
(b) the spatiotemporal patterns associated with the Hikosaka line-motion illusion (LMI)—the perception of motion induced by a static flashed
stationary square cue quickly followed by a stationary bar.

Voltage-sensitive dye imaging has revealed intriguing similarities in the cortical spatiotemporal activity in response to the Hikosaka LMI stim-
ulus and a small moving square. This similarity is believed to be associated with “pre-attentive illusory motion perception.” In our model, we
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have revealed network mechanisms underlying the similarity in spatiotemporal patterns in response to these two stimuli. In our study, it appears
that information is encoded in spatiotemporally coarse-grained events across many neurons or neuronal ensembles. An event could be said to
occur whenever an ensemble of neurons attains a particular level of activity (e.g., a specified average subthreshold voltage or firing rate). This
is a generalization of an event defined by a single spike of a single neuron. This generalization incorporates spatially and temporally averaged
dynamical features. These cascading events are probabilistically robust and stable, and they can encode network inputs and can be used to dis-
criminate fine dynamical features in the inputs, as shown in our numerical simulations.

Cascades of these events signify causal relationships and information flows among different neurons and have strong dynamic consequences
for cortical activity. The next theoretical challenge is to characterize the probability structures of space–time event chains, which constitute a
projection of high-dimensional, highly nonlinear, complex network activity to a backbone dynamics of critical space–time event chains on
dynamically relevant spatial and temporal scales. The dynamics of space–time event chains hints at a path-integral-like language in capturing
their potential for encoding information. These event chains of spatiotemporal activities are probably relevant to behavioral/cognitive dynam-
ics. Animals don’t sit counting spikes, to determine a rate, before taking action. Indeed, they can respond in O(100) ms—not enough time to
count many spikes. In our view, it is these distinct, critical spatiotemporal event chains in our brains that indicate that something has just hap-
pened. These chains of events are like lightning bolts: Once they flash in our brains, we have probably already attained a certain perception
about the external world.
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