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The human brain is a collection of specialized cells of different types, such as astrocytes and neurons. The approximately 1011 neurons are
excitable cells whose resting state is characterized by a cross-membrane voltage difference. Neurons have long filaments, called axons, that
allow the propagation of electromagnetic signals as voltage variations, known as “action potentials.”

The transfer of a signal from one neuron to another occurs in a chemical process performed by neurotransmitters over the synaptic gap, cre-
ating a postsynaptic potential in the receiving neuron. The postsynaptic potential, which can be fairly stable over a period of milliseconds, can
be modeled as a localized current dipole. Neurons are organized in bundles; when thousands of neighboring neurons are simultaneously in the
postsynaptic excitation state, the postsynaptic potentials together give rise to a localized current approximately parallel to the neuron bundle.
This elementary weak current, called the “impressed current,” can be strong enough to create an observable electromagnetic field outside the
skull. The inverse problem of magnetoencephalography (MEG) is to estimate impressed currents from observations of magnetic fields outside
the skull.

The extracranial magnetic fields induced by neural activity are extremely weak. Normal brain activity induces fields of order 10–15 Tesla;
fields during epileptic seizures can reach the 10–13 Tesla level. Measuring fields of this size is a great challenge, requiring the use of SQUID (for
superconducting quantum interference device) magnetometers. Another technological challenge is isolation of the measuring environment from
external magnetic noise. To understand the importance of this isolation, consider that the magnetic field of the Earth is of order 5 . 10–5 Tesla,
and that an ordinary compass is readily disturbed by normal home electronics or large nearby metallic objects.

A common way to model impressed currents is to generate a grid that covers the region of interest in the brain and attach three mutually
orthogonal electric dipoles with unknown amplitudes at each grid point. The electromagnetic fields obey Maxwell’s equations; because of this
linearity, the calculated magnetic field is a linear combination of the magnetic fields induced by each individual dipole. If J

→
(x) denotes the

impressed current field and q→j is the j th unit dipole located at xj, we have a discretized model,

J
→

(x) = ∑ δ(x – xj)αj q→j, b = Lα + e,

where α is a vector containing the dipole amplitudes αj, b is a vector containing the measured magnetic field components at the magnetome-
ters, e represents the observation noise, and, finally, L is the “lead field matrix” whose jth column contains the calculated observations to which
the jth dipole   q→j gives rise at the magnetometers.

Apart from the technological challenges, the MEG inverse problem poses great computational problems. One of the central difficulties is the
existence of silent currents—that is, impressed currents that cause no signal in the detectors. In terms of our linear discretized model, this means
that the lead field matrix L has nontrivial null space. To choose a meaningful solution vector from all possible solutions, we need to use a selec-
tion rule that is based on the available prior information concerning the impressed currents.

The earliest MEG reconstruction algorithms were based on a straightforward idea: Because the data gives no information about the null space
of the lead field matrix, the null space component should be set to zero. This reasoning leads to the concept of the “minimum-norm solution,”
αMN, which is commonly formulated in the MEG literature as

αMN = arg min ⏐⏐α⏐⏐, subject to ⏐⏐Lα�−�b⏐⏐ = d,

where d > 0 is the approximate norm of the error vector e. In other words, we are seeking the coefficient vector with minimum euclidian norm,
satisfying the data up to the error discrepancy.

The minimum-norm estimate results from a selection principle that is justified more by algebraic considerations than by a priori beliefs about
the impressed current. It turns out that the minimum-norm estimates are typically spread out spatially—that is, a large number of elementary
dipoles are simultaneously active. Such predictions often contradict what we believe to be happening in reality. When a subject moves a finger,
for instance, well-localized activity should appear on the motor cortex and the MEG system should see a few active dipoles rather than wide-
spread activity.

An alternative selection principle that leads to strongly localized solutions is based on the idea that the data should be explained with the min-
imum number of active dipoles. Such a solution, called the “minimum-current estimator,” αMC, can be defined as

αMC = arg min ∑ |α j|, subject to ⏐⏐Lα�−�b⏐⏐ = d.

Here we are minimizing the �1 norm, rather than the euclidian �2 norm, of the coefficient vector. This seemingly innocent change has a dramat-
ic effect on the estimated solution. Figure 1 shows the minimum-norm and minimum-current estimates. A single dipole was used to simulate
the data, and noise was added.

Is there a simple way to understand why the estimates behave so differently? To gain insight, we assume that we are solving an underdeter-
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mined system, Ax = y, using either the mini-
mum-�1 criterion or the minimum-�2 criterion.

Schematically, we can imagine that x is a
point in the plane, with Ax = y defining a line in
the space. For the minimum-norm solutions, we
look for the smallest ball that touches this line;
the touching point is the solution. The �2 ball in
this case is simply a circle, while the �1 ball is a
diamond with corners on the coordinate axes
(see Figure 2). The �1 ball, because it extends
along the coordinate axes, is likely to touch the
line Ax = y on one of the coordinate axes. But
this means exactly that the minimum-�1 solution
explains the data with a single non-zero compo-
nent. This simple geometric picture can be
extended to higher dimensions, and it is possible—if not simple—to imagine what the solutions
look like.

Interestingly, minimum-�1 solutions have received lots of publicity recently, in the context of
restoring piecewise constant signals and images from incomplete frequency samples. The basic
explanation of the functioning of these algorithms is the same as the one given here for the MEG
inverse problem.
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Figure 1. Minimum-norm (left) and minimum-current (right) estimates. A seemingly innocent
change is responsible for the very different behaviors.

Figure 2. A simple geometric picture helps
explain why the estimates of Figure 1
behave so differently.


