A Bayesian Data Analysis In a Small n Sequential Multiple Assignment Randomized Trial (snSMART)
2018 Joint Statistical Meetings

Boxian Wei

Department of Biostatistics, University of Michigan

July 30, 2018
Study Design

```
Baseline 6 months 12 months
```

```
R 1:1:1

A  
Response?  Yes  A
No  B

R 1:1
B  
Response?  Yes  B
No  A

R 1:1
C  
Response?  Yes  C
No  A

R 1:1
A  
B

C

```

Boxian Wei (University of Michigan) Bayesian snSMART July 30, 2018
Notation

- **Outcome** - Y_{ijk}: a binary response for i^{th} patient at the j^{th} stage receiving treatment k ($k = A, B, C$).

- **Primary interest** - π_k: efficacy of individual treatment k, which is measured by the response rate associated with the treatment k.

- **Linkage parameter** - β_1k, β_0k: is used to model the second-stage response conditionally on the first-stage response.
 - $\beta_1k \pi_k$: second stage response rate on treatment k for first stage responders.
 - $\beta_0k \pi_k'$: second stage response rate on treatment k' for first stage non-responders.
Bayesian Joint Stage Model (BJSM)

- For i^{th} patient at the 1st stage receiving treatment k.
 \[Y_{i1k} | \pi_k \sim Bernoulli(\pi_k) \]

- For i^{th} patient at the 2nd stage receiving treatment k or k'.
 \[Y_{i2k(k')} \mid Y_{i1k}, \pi_k \sim Bernoulli((\beta_1 \pi_k)^{Y_{i1k}} (\beta_0 \pi_{k'})^{1-Y_{i1k}}) \]

- Prior settings
 - $\pi_k \sim Beta(0.4, 1.6)$, $\beta_1 \sim Pareto(3, 1)$, $\beta_0 \sim Beta(1, 1)$
Comparator Models

- Log-Poisson Joint Stage Model (LPJSM)
- Bayesian Joint Stage Model with Multiple Linkage Parameters (BJSMM)
- Bayesian First Stage Model (BFSM)
Simulation Settings

- We look at the following statistics of the estimators when we compare our methods with others.
 - Bias, Root mean-square error (rMSE), Length of 95% credible/confidence (CI), Coverage rate of 95% CI

- Simulation Scenarios

Table 1: Simulation scenarios for snSMART with 30 patients per arm.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>π_A</th>
<th>π_B</th>
<th>π_C</th>
<th>β_{0A}</th>
<th>β_{0B}</th>
<th>β_{0C}</th>
<th>β_{1A}</th>
<th>β_{1B}</th>
<th>β_{1C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.9</td>
<td>0.6</td>
<td>0.3</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Summary of Simulation Results

- In both scenarios, the BJSM and BJSMM perform well across all measures.

- In most other scenarios, the BJSM and BJSMM outperform the other methods.
Future Work

- Establish sample size calculations based on the analysis of snSMARTs using the Bayesian joint stage model.
- Develop an easy-to-use applet of sample size calculation for user specified study design.
This work was supported through a Patient-Centered Outcomes Research Institute (PCORI) Award (ME-1507-31108).
Thank you!

Q & A

Please follow up
boxian@umich.edu