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Problem

Given a sequence model trained on data with long-range
dependencies, how can we evaluate whether these have been

successfully learned?

How can we identify these long-range dependencies in the first
place?
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Contributions

• Introduce a framework for evaluation of long memory as a
statistical property with an existing literature.

• Demonstrate practical tools for estimation and hypothesis
testing.

• Establish criteria for long memory in trained RNN models.
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Long Memory in the Time Domain

Stochastic process Xt ∈ R, t ∈ Z has long memory if

γ(k) , Cov(Xt ,Xt+k) = Lγ(k)︸ ︷︷ ︸
slowly varying

slow decay︷ ︸︸ ︷
|k|−(1−2d), as k →∞

for some d ∈ (0, 1/2).

Slowly varying at infinity:

L(xu) ∼ L(u) as x →∞ (γ(k) asymptotically |k|−(1−2d))

Slow decay of autocovariance:
n∑

k=0
|γ(k)| → ∞ as n→∞ (vs. γ(k) abs. summable)
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Long Memory in the Frequency Domain
Definitions:
Spectral density function

fX (λ) , 1
2π

∞∑
k=−∞

γ(k)e−ikλ

Given observations X1:T = (X1, ...,XT ), define:

Periodogram

I(λ) , 1
2π

∞∑
|k|<T

γ̂(k)eikλ = 1
2πT

∣∣∣∣∣
T∑

t=1
Xte−itλ

∣∣∣∣∣
2

,

with the second equality holding only at Fourier frequencies

λj = 2πj/T , j = 1, ...,T .
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Long Memory in the Frequency Domain

Key idea: γ(k) as k →∞ ⇐⇒ fX (λ) as λ→ 0

Stochastic process Xt ∈ R, t ∈ Z with spectral density function
satisfying

fX (λ) = Lf (λ)|λ|−2d

has
{
long memory if d ∈ (0, 1/2)
short memory if d = 0

.

Note: long memory parameter d is slope of log-log plot:

log fX (λ) ≈ −2d log λ as λ→ 0 (i.e.− 2 log λ→∞).

7 / 20



Long Memory in the Frequency Domain

Key idea: γ(k) as k →∞ ⇐⇒ fX (λ) as λ→ 0

Stochastic process Xt ∈ R, t ∈ Z with spectral density function
satisfying

fX (λ) = Lf (λ)|λ|−2d

has
{
long memory if d ∈ (0, 1/2)
short memory if d = 0

.

Note: long memory parameter d is slope of log-log plot:

log fX (λ) ≈ −2d log λ as λ→ 0 (i.e.− 2 log λ→∞).

7 / 20



Long Memory in the Frequency Domain

Key idea: γ(k) as k →∞ ⇐⇒ fX (λ) as λ→ 0

Stochastic process Xt ∈ R, t ∈ Z with spectral density function
satisfying

fX (λ) = Lf (λ)|λ|−2d

has
{
long memory if d ∈ (0, 1/2)
short memory if d = 0

.

Note: long memory parameter d is slope of log-log plot:

log fX (λ) ≈ −2d log λ as λ→ 0 (i.e.− 2 log λ→∞).

7 / 20



Simple Illustration

Short memory AR process vs long memory FI-AR process:
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Left: time domain. Right: frequency domain.
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Semiparametric estimation

What:

→ Investigate some feature in data without fully specifying joint
distribution

→ Finite parameter of interest (long memory parameter),
infinite-dimensional nuisance parameter (full spectral density)

Why:

→ Robust to misspecification of short-term behavior

→ Computationally efficient even for very long sequences
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Semiparametric estimation

How:
Spectral approx. near zero frequency:

fX (λ) = Λ(d)GΛ(d)∗, Λ(d) , diag(λ−dei(π−λ)/2)

with long run covariance G real, symmetric, positive definite.

Maximize local Whittle profile likelihood

Lm(Ĝ(d), d) = 1
m

m∑
j=1

[
log det Λj(d)Ĝ(d)Λ∗j (d)

+ Tr
[(

Λj(d)Ĝ(d)Λ∗j (d)
)−1

I(λj)
] ]
.
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Gaussian Semiparametric Estimator

The Gaussian semiparametric estimator is

d̂GSE = argmin
d∈Θ

Lm(d)

with Θ = (−1/2, 1/2)p.

Asymptotic normality [Shimotsu, 2007]: Let Xt ∈ Rp have long
memory d0 and long-run covariance G , and define

Ω = 2
[
Ip + G � G−1 + π2

4 (G � G−1 − Ip)
]
.

Then √
m(d̂GSE − d0)→d N (0,Ω−1).
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Estimating long memory of sequence data

Do language and music data have long memory?
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Left: language data. Right: music data.

Semiparametric estimation and testing confirm long memory
suggested by visual heuristic.
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Long memory criterion for RNNs

ARFIMA model:
Represent long memory Xt via linear filtering and fractional
integration of white noise Zt

Xt =

long memory︷ ︸︸ ︷
(1− B)−d Φ−1(B)Θ(B)︸ ︷︷ ︸

linear features

Zt

RNN: Study the stochastic process

Xt = Ψ(Zt)

with Ψ(·) the learned RNN transformation of inputs to hidden
features.
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Long memory criterion for RNNs

A simple criterion:
Do we have

Xt = Ψ(Zt) =

long memory︷ ︸︸ ︷
(1− B)−d Ψ̃(Zt)︸ ︷︷ ︸

nonlinear, short memory

for some d 6= 0 and short memory Ψ̃(Zt)?

How to evaluate:

1. Train RNN model(s) to benchmark accuracy on long memory
data

2. Generate from Xt = Ψ(Zt) by computing RNN hidden
representation of white noise

3. Estimate and test for long memory with GSE
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Results: RNN models
Hypothesis test for long memory:

H0 : d̄ = 0 vs.

expected result︷ ︸︸ ︷
H1 : d̄ > 0 .
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Results: RNN models

Hypothesis test for long memory:

observed result︷ ︸︸ ︷
H0 : d̄ = 0 vs. H1 : d̄ > 0.

Total Memory in RNN Representations of White Noise Input.

Model Norm. to-
tal memory

p-value Reject H0?

LSTM (trained) −8.59 × 10−4 0.583 X
LSTM (untrained) −4.17 × 10−4 0.572 X

Memory cell −5.96 × 10−4 0.552 X
SCRN 2.37 × 10−3 0.324 X
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Thanks!
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