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Problem

Given a sequence model trained on data with long-range
dependencies, how can we evaluate whether these have been

successfully learned?

How can we identify these long-range dependencies in the first
place?

3 / 20



Problem

Given a sequence model trained on data with long-range
dependencies, how can we evaluate whether these have been

successfully learned?

How can we identify these long-range dependencies in the first
place?

3 / 20



Contributions

• Introduce a framework for evaluation of long memory as a
statistical property with an existing literature.

• Demonstrate practical tools for estimation and hypothesis
testing.

• Establish criteria for long memory in trained RNN models.
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Long Memory in the Time Domain

Stochastic process Xt ∈ R, t ∈ Z has long memory if

γ(k) , Cov(Xt ,Xt+k) = Lγ(k)︸ ︷︷ ︸
slowly varying

slow decay︷ ︸︸ ︷
|k|−(1−2d), as k →∞

for some d ∈ (0, 1/2).

Slowly varying at infinity:

L(xu) ∼ L(u) as x →∞ (γ(k) asymptotically |k|−(1−2d))

Slow decay of autocovariance:
n∑

k=0
|γ(k)| → ∞ as n→∞ (vs. γ(k) abs. summable)
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Long Memory in the Frequency Domain
Definitions:
Spectral density function

fX (λ) , 1
2π

∞∑
k=−∞

γ(k)e−ikλ

Given observations X1:T = (X1, ...,XT ), define:

Periodogram

I(λ) , 1
2π

∞∑
|k|<T

γ̂(k)eikλ = 1
2πT

∣∣∣∣∣
T∑

t=1
Xte−itλ

∣∣∣∣∣
2

,

with the second equality holding only at Fourier frequencies

λj = 2πj/T , j = 1, ...,T .
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Long Memory in the Frequency Domain

Key idea: γ(k) as k →∞ ⇐⇒ fX (λ) as λ→ 0

Stochastic process Xt ∈ R, t ∈ Z with spectral density function
satisfying

fX (λ) = Lf (λ)|λ|−2d

has
{
long memory if d ∈ (0, 1/2)
short memory if d = 0

.

Note: long memory parameter d is slope of log-log plot:

log fX (λ) ≈ −2d log λ as λ→ 0 (i.e.− 2 log λ→∞).
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Simple Illustration

Short memory AR process vs long memory FI-AR process:
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Left: time domain. Right: frequency domain.
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Semiparametric estimation

What:

→ Investigate some feature in data without fully specifying joint
distribution

→ Finite parameter of interest (long memory parameter),
infinite-dimensional nuisance parameter (full spectral density)

Why:

→ Robust to misspecification of short-term behavior

→ Computationally efficient even for very long sequences
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Semiparametric estimation

How:
Spectral approx. near zero frequency:

fX (λ) = Λ(d)GΛ(d)∗, Λ(d) , diag(λ−dei(π−λ)/2)

with long run covariance G real, symmetric, positive definite.

Maximize local Whittle profile likelihood

Lm(Ĝ(d), d) = 1
m

m∑
j=1

[
log detΛj(d)Ĝ(d)Λ∗j (d)

+ Tr
[(

Λj(d)Ĝ(d)Λ∗j (d)
)−1

I(λj)
] ]
.
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Lm(Ĝ(d), d) = 1
m

m∑
j=1

[
log detΛj(d)Ĝ(d)Λ∗j (d)
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Gaussian Semiparametric Estimator

The Gaussian semiparametric estimator is

d̂GSE = argmin
d∈Θ

Lm(d)

with Θ = (−1/2, 1/2)p.

Asymptotic normality [Shimotsu, 2007]: Let Xt ∈ Rp have long
memory d0 and long-run covariance G , and define

Ω = 2
[
Ip + G � G−1 + π2

4 (G � G−1 − Ip)
]
.

Then √
m(d̂GSE − d0)→d N (0,Ω−1).
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Estimating long memory of sequence data

Do language and music data have long memory?
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Left: language data. Right: music data.

Semiparametric estimation and testing confirm long memory
suggested by visual heuristic.
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Long memory criterion for RNNs

ARFIMA model:
Represent long memory Xt via linear filtering and fractional
integration of white noise Zt

Xt =

long memory︷ ︸︸ ︷
(1− B)−d Φ−1(B)Θ(B)︸ ︷︷ ︸

linear features

Zt

RNN: Study the stochastic process

Xt = Ψ(Zt)

with Ψ(·) the learned RNN transformation of inputs to hidden
features.
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Long memory criterion for RNNs

A simple criterion:
Do we have

Xt = Ψ(Zt) =

long memory︷ ︸︸ ︷
(1− B)−d Ψ̃(Zt)︸ ︷︷ ︸

nonlinear, short memory

for some d 6= 0 and short memory Ψ̃(Zt)?

How to evaluate:

1. Train RNN model(s) to benchmark accuracy on long memory
data

2. Generate from Xt = Ψ(Zt) by computing RNN hidden
representation of white noise

3. Estimate and test for long memory with GSE
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Results: RNN models
Hypothesis test for long memory:

H0 : d̄ = 0 vs.

expected result︷ ︸︸ ︷
H1 : d̄ > 0 .
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Results: RNN models

Hypothesis test for long memory:

observed result︷ ︸︸ ︷
H0 : d̄ = 0 vs. H1 : d̄ > 0.

Total Memory in RNN Representations of White Noise Input.

Model Norm. to-
tal memory

p-value Reject H0?

LSTM (trained) −8.59 × 10−4 0.583 X
LSTM (untrained) −4.17 × 10−4 0.572 X

Memory cell −5.96 × 10−4 0.552 X
SCRN 2.37 × 10−3 0.324 X

18 / 20



References
Paper:
Greaves-Tunnell, A, and Harchaoui, H. "A Statistical Investigation of Long
Memory in Language and Music." In ICML. 2019.

Further references:
Beran, J., Feng, Y., Ghosh, S., and Kulik, R. Long-Memory Processes:
Probabilistic Properties and Statistical Methods. Springer, 2013.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
Computation, 9(8):1735−1780, 1997.

Levy, O., Lee, K., FitzGerald, N., and Zettlemoyer, L. Long short-term memory
as a dynamically computed elementwise weighted sum. In ACL, 2018.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., and Ranzato, M. Learning
longer memory in recurrent neural networks. In ICLR, 2015.

Shimotsu, K. Gaussian semiparametric estimation of multivariate fractionally
integrated processes. Journal of Econometrics, 137(2):277−310, 2007.

19 / 20



Thanks!
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