Statistical Evaluation of Long Memory in Recurrent Neural Networks

Alec Greaves-Tunnell PhD Student, UW Statistics

SDSS 2019

WASHINGTON

Long Memory Processes: Motivation & Background

Semiparametric Estimation

Long Memory in Language, Music, and RNNs

Problem

Given a sequence model trained on data with long-range dependencies, how can we **evaluate** whether these have been successfully learned?

Problem

Given a sequence model trained on data with long-range dependencies, how can we **evaluate** whether these have been successfully learned?

How can we **identify** these long-range dependencies in the first place?

Contributions

• Introduce a framework for evaluation of long memory as a **statistical property** with an existing literature.

Contributions

- Introduce a framework for evaluation of long memory as a **statistical property** with an existing literature.
- Demonstrate practical tools for estimation and hypothesis testing.

Contributions

- Introduce a framework for evaluation of long memory as a **statistical property** with an existing literature.
- Demonstrate practical tools for estimation and hypothesis testing.
- Establish criteria for long memory in trained RNN models.

Long Memory in the Time Domain

Long Memory in the Time Domain Stochastic process $X_t \in \mathbb{R}$, $t \in \mathbb{Z}$ has long memory if

$$\gamma(k) \triangleq \operatorname{Cov}(X_t, X_{t+k}) = \underbrace{L_{\gamma}(k)}_{\text{slowly varying}} \overbrace{|k|^{-(1-2d)}}^{\text{slow decay}}, \text{ as } k \to \infty$$

for some $d \in (0, 1/2)$.

Long Memory in the Time Domain Stochastic process $X_t \in \mathbb{R}$, $t \in \mathbb{Z}$ has long memory if

$$\gamma(k) \triangleq \operatorname{Cov}(X_t, X_{t+k}) = \underbrace{L_{\gamma}(k)}_{\text{slowly varying}} \overbrace{|k|^{-(1-2d)}}^{\text{slow decay}}, \text{ as } k \to \infty$$

for some $d \in (0, 1/2)$.

Slowly varying at infinity:

 $L(xu) \sim L(u)$ as $x \to \infty$ $(\gamma(k)$ asymptotically $|k|^{-(1-2d)})$

Long Memory in the Time Domain Stochastic process $X_t \in \mathbb{R}$, $t \in \mathbb{Z}$ has long memory if

$$\gamma(k) \triangleq \operatorname{Cov}(X_t, X_{t+k}) = \underbrace{L_{\gamma}(k)}_{\text{slowly varying}} \overbrace{|k|^{-(1-2d)}}^{\text{slow decay}}, \text{ as } k \to \infty$$

for some $d \in (0, 1/2)$.

Slowly varying at infinity:

 $L(xu) \sim L(u)$ as $x \to \infty$ $(\gamma(k)$ asymptotically $|k|^{-(1-2d)})$

Slow decay of autocovariance:

$$\sum_{k=0}^n |\gamma(k)| o \infty$$
 as $n o \infty$ (vs. $\gamma(k)$ abs. summable)

Long Memory in the Frequency Domain **Definitions**:

Spectral density function

$$f_X(\lambda) \triangleq \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma(k) e^{-ik\lambda}$$

Long Memory in the Frequency Domain **Definitions**:

Spectral density function

$$f_X(\lambda) riangleq rac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma(k) e^{-ik\lambda}$$

Given observations $X_{1:T} = (X_1, ..., X_T)$, define:

Periodogram

$$I(\lambda) \triangleq \frac{1}{2\pi} \sum_{|k| < T}^{\infty} \widehat{\gamma}(k) e^{ik\lambda} = \frac{1}{2\pi T} \left| \sum_{t=1}^{T} X_t e^{-it\lambda} \right|^2,$$

with the second equality holding only at Fourier frequencies

$$\lambda_j = 2\pi j/T, \ \ j = 1, ..., T.$$

Long Memory in the Frequency Domain

Key idea:
$$\gamma(k)$$
 as $k \to \infty \iff f_X(\lambda)$ as $\lambda \to 0$

Long Memory in the Frequency Domain

Key idea:
$$\gamma(k)$$
 as $k \to \infty \iff f_X(\lambda)$ as $\lambda \to 0$

Stochastic process $X_t \in \mathbb{R}, t \in \mathbb{Z}$ with spectral density function satisfying

$$f_X(\lambda) = L_f(\lambda)|\lambda|^{-2d}$$

has $\begin{cases} \text{long memory} & \text{if } d \in (0, 1/2) \\ \text{short memory} & \text{if } d = 0 \end{cases}$

٠

Long Memory in the Frequency Domain

$$\textbf{Key idea:} \quad \gamma(k) \text{ as } k \to \infty \iff f_X(\lambda) \text{ as } \lambda \to 0$$

Stochastic process $X_t \in \mathbb{R}$, $t \in \mathbb{Z}$ with spectral density function satisfying

$$f_X(\lambda) = L_f(\lambda)|\lambda|^{-2d}$$

has
$$\begin{cases} \text{long memory} & \text{if } d \in (0, 1/2) \\ \text{short memory} & \text{if } d = 0 \end{cases}$$

٠

Note: long memory parameter *d* is slope of log-log plot:

$$\log f_X(\lambda) \approx -2d \log \lambda$$
 as $\lambda \to 0$ (i.e. $-2 \log \lambda \to \infty$).

Simple Illustration

Short memory AR process vs long memory FI-AR process:

Left: time domain. Right: frequency domain.

Long Memory Processes: Motivation & Background

Semiparametric Estimation

Long Memory in Language, Music, and RNNs

What:

 \rightarrow Investigate some feature in data without fully specifying joint distribution

 \rightarrow Finite parameter of interest (long memory parameter), infinite-dimensional nuisance parameter (full spectral density)

What:

 \rightarrow Investigate some feature in data without fully specifying joint distribution

 \rightarrow Finite parameter of interest (long memory parameter), infinite-dimensional nuisance parameter (full spectral density)

Why:

- \rightarrow Robust to misspecification of short-term behavior
- \rightarrow Computationally efficient even for very long sequences

How:

Spectral approx. near zero frequency:

$$f_X(\lambda) = \Lambda(d)G\Lambda(d)^*, \ \Lambda(d) \triangleq \operatorname{diag}(\lambda^{-d}e^{i(\pi-\lambda)/2})$$

with *long run covariance* G real, symmetric, positive definite.

How:

Spectral approx. near zero frequency:

$$f_X(\lambda) = \Lambda(d)G\Lambda(d)^*, \ \Lambda(d) \triangleq \operatorname{diag}(\lambda^{-d}e^{i(\pi-\lambda)/2})$$

with *long run covariance* G real, symmetric, positive definite.

Maximize local Whittle profile likelihood

$$\mathcal{L}_{\mathbf{m}}(\widehat{G}(d), d) = \frac{1}{\mathbf{m}} \sum_{j=1}^{\mathbf{m}} \Big[\log \det \Lambda_j(d) \widehat{G}(d) \Lambda_j^*(d) \\ + \operatorname{Tr} \Big[\Big(\Lambda_j(d) \widehat{G}(d) \Lambda_j^*(d) \Big)^{-1} I(\lambda_j) \Big] \Big].$$

Gaussian Semiparametric Estimator

The Gaussian semiparametric estimator is

$$\hat{d}_{\mathsf{GSE}} = rgmin_{d\in\Theta} \mathcal{L}_{m}(d)$$

with $\Theta = (-1/2, 1/2)^{p}$.

Gaussian Semiparametric Estimator

The Gaussian semiparametric estimator is

$$\hat{d}_{\mathsf{GSE}} = rgmin_{d\in\Theta} \mathcal{L}_{m}(d)$$

with $\Theta = (-1/2, 1/2)^{p}$.

Asymptotic normality [Shimotsu, 2007]: Let $X_t \in \mathbb{R}^p$ have long memory d_0 and long-run covariance G, and define

$$\Omega = 2\left[I_{\rho} + G \odot G^{-1} + \frac{\pi^2}{4}(G \odot G^{-1} - I_{\rho})\right].$$

Then

$$\sqrt{m}(\hat{d}_{\mathsf{GSE}}-d_0)
ightarrow_d \mathcal{N}(0,\Omega^{-1}).$$

Long Memory Processes: Motivation & Background

Semiparametric Estimation

Long Memory in Language, Music, and RNNs

Estimating long memory of sequence data

Do language and music data have long memory?

Estimating long memory of sequence data

Do language and music data have long memory?

Left: language data. Right: music data.

Estimating long memory of sequence data

Do language and music data have long memory?

Left: language data. Right: music data.

Semiparametric estimation and testing confirm long memory suggested by visual heuristic.

ARFIMA model:

Represent long memory X_t via linear filtering and fractional integration of white noise Z_t

ARFIMA model:

Represent long memory X_t via linear filtering and fractional integration of white noise Z_t

RNN: Study the stochastic process

$$X_t = \Psi(Z_t)$$

with $\Psi(\cdot)$ the learned RNN transformation of inputs to hidden features.

A simple criterion:

Do we have

nonlinear, short memory

for some $d \neq 0$ and short memory $\tilde{\Psi}(Z_t)$?

A simple criterion:

Do we have

for some $d \neq 0$ and short memory $\tilde{\Psi}(Z_t)$? How to evaluate:

- 1. Train RNN model(s) to benchmark accuracy on long memory data
- 2. Generate from $X_t = \Psi(Z_t)$ by computing RNN hidden representation of white noise
- 3. Estimate and test for long memory with GSE

Results: RNN models

Hypothesis test for long memory:

expected result

$$\mathcal{H}_0: ar{d} = 0 \quad \text{vs.} \quad \overbrace{\mathcal{H}_1: ar{d} > 0}^{\mathcal{H}_1: ar{d} > 0} \; .$$

Results: RNN models

Hypothesis test for long memory:

$$\overbrace{\mathcal{H}_0: \bar{d} = 0}^{\text{observed result}} \quad \text{vs. } \mathcal{H}_1: \bar{d} > 0.$$

Total Memory in RNN Representations of White Noise Input.

Model	Norm. to- tal memory	p-value	Reject \mathcal{H}_0 ?
LSTM (trained)	$-8.59 imes10^{-4}$	0.583	Х
LSTM (untrained)	$-4.17 imes10^{-4}$	0.572	Х
Memory cell	-5.96×10^{-4}	0.552	Х
SCRN	$2.37 imes10^{-3}$	0.324	Х

References

Paper:

Greaves-Tunnell, A, and Harchaoui, H. "A Statistical Investigation of Long Memory in Language and Music." In *ICML*. 2019.

Further references:

Beran, J., Feng, Y., Ghosh, S., and Kulik, R. Long-Memory Processes: Probabilistic Properties and Statistical Methods. Springer, 2013.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. *Neural Computation*, 9(8):1735–1780, 1997.

Levy, O., Lee, K., FitzGerald, N., and Zettlemoyer, L. Long short-term memory as a dynamically computed elementwise weighted sum. In ACL, 2018.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., and Ranzato, M. Learning longer memory in recurrent neural networks. In *ICLR*, 2015.

Shimotsu, K. Gaussian semiparametric estimation of multivariate fractionally integrated processes. *Journal of Econometrics*, 137(2):277–310, 2007.

Thanks!