An R Package for Linear Mediation Analysis with Complex Survey Data

Yujiao Mai, Jiahui Xu, Deo Kumar Srivastava, Hui Zhang Department of Biostatistics

Outline

1. Classic Mediation Analysis
2. Complex Surveys
3. Problem \& Solution
4. Software \& Application

Section 1

Classic Mediation Analysis

Questions to answer

Regression analysis:
"Does it work?"

Mediation analysis: "How does it work?"

Model

(Continuous Variables M, Y)

- Estimator: $F_{M L}\left(\theta ; S_{n}\right)=\log |\Sigma(\theta)|+\operatorname{trace}\left[S_{n} \Sigma(\theta)^{-1}\right]-\log \left|S_{n}\right|-p$
S_{n} : sample covariance matrix
$\Sigma(\theta)$: estimated covariance matrix, $\theta=\left(\mu_{M}, \mu_{Y}, \alpha, \gamma, \beta, \sigma_{\varepsilon_{M}}^{2}, \sigma_{\varepsilon_{Y}}^{2}\right), p$: number of parameters

$$
\operatorname{VAR}(M ; \theta)=\operatorname{VAR}\left(\mu_{M}+\alpha X\right)+\sigma_{\varepsilon_{M}}^{2}
$$

Model (Continue)

- Significance Test: $\mathrm{H}_{0}: \alpha \beta=0 ; \mathrm{H}_{1}: \alpha \beta \neq 0$

1) Sobel's Test (Sobel, 1982)

$$
T_{\text {Sobel }}=\hat{\alpha} \hat{\beta} / \sqrt{\hat{\beta}^{2} \sqrt{\operatorname{Gar}}(\hat{\alpha})+\hat{\alpha}^{2} \sqrt{\operatorname{Gar}}(\hat{\beta})} \quad H_{0}^{\sim} N(0,1) \text { as } n \rightarrow \infty
$$

2) Resampling/bootstrap

Assumptions

True Model
Independent Residuals
Normality
Independent-identically-distributed sample data

Section 2

Complex Surveys

Multi-stage
 Sampling (Wolerer 2007)

Suppose the population (40,000 students) locate in two states.

Each state has 20 districts.
Each district has 10 schools.
Each school has 100 students.

Sample weights $\left(\omega_{0}\right)=$ the number of students represented

State	District	School	Student	\mathbf{Y}	$\boldsymbol{\omega}_{0}$
1	1	1	1	9.8	2500
1	1	1	2	7.5	2500
1	1	2	3	8.3	2500
1	1	2	4	4.5	2500
1	2	3	5	4.5	2500
1	2	3	6	5.1	2500
1	2	4	7	2.3	2500
1	2	4	8	6.5	2500
2	3	5	9	8.1	2500
2	3	5	10	3.2	2500
2	3	6	11	4.5	2500
2	3	6	12	5.8	2500
2	4	7	13	6.6	2500
2	4	7	14	8.1	2500
2	4	8	15	1.2	2500
2	4	8	16	6.5	2500

$$
\omega_{0}=\frac{1}{\pi_{\mathrm{PSU}} \times \pi_{\text {sch } \mid \mathrm{PSU}} \times \pi_{\text {stud } \mid \text { sch }}}=\frac{1}{\frac{2}{20} \times \frac{2}{10} \times \frac{2}{100}}=2,500
$$

Problem: Estimate the Mean of Y

- Disaggregated estimates vs. aggregated estimates
(Group-specific effects)
(Generalized effects)
For aggregated estimates:
- Point estimate is consistent when including the sample weights
- Standard errors is underestimated even when taking into account the sample weights

Adjustments:

Taylor series linearization (TSL)
Bootstrap
Jackknife repeated replications (JRR)
Balanced repeated replications (BRR)

Balanced repeated replications

State	District	School	Student	Y	ω_{0}	ω_{1}^{\prime}	ω_{2}^{\prime}	$\boldsymbol{\omega}_{3}^{\prime}$	$\boldsymbol{\omega}_{4}^{\prime}$
1	1	1	1	9.8	2500	0	2×2500	0	2×2500
1	1	1	2	7.5	2500	0	2×2500	0	2×2500
1	1	2	3	8.3	2500	0	2×2500	0	2×2500
1	1	2	4	4.5	2500	0	2×2500	0	2×2500
1	2	3	5	4.5	2500	2×2500	0	2×2500	0
1	2	3	6	5.1	2500	2×2500	0	2×2500	0
1	2	4	7	2.3	2500	2×2500	0	2×2500	0
1	2	4	8	6.5	2500	2×2500	0	2×2500	0
2	3	5	9	8.1	2500	0	0	2×2500	2×2500
2	3	5	10	3.2	2500	0	0	2×2500	2×2500
2	3	6	11	4.5	2500	0	0	2×2500	2×2500
2	3	6	12	5.8	2500	0	0	2×2500	2×2500
2	4	7	13	6.6	2500	2×2500	2×2500	0	0
2	4	7	14	8.1	2500	2×2500	2×2500	0	0
2	4	8	15	1.2	2500	2×2500	2×2500	0	0
2	4	8	16	6.5	2500	2×2500	2×2500	0	0

Replicate sampling
weights $\boldsymbol{\omega}^{\prime}{ }_{r}, r=1,2, \ldots, R$
R is the number of replications, $R=4$ in the case.
$\hat{\mu}_{r}$ is the estimate using replicate weight $\boldsymbol{w}_{r}^{\prime}$.
$\hat{\mu}$ is the estimate using original(main) sample weights

$$
S E_{B R R}(\hat{\mu})=\sqrt{\frac{\sum_{r=1}^{R}\left(\hat{\mu}_{r}-\hat{\mu}\right)^{2}}{R}}
$$

Section 3
Problem \& Solution

Problem to Solve

How can mediation analysis work with complex surveys?

Classic Mediation Analysis	Complex Surveys
i-i-d sample:	
Independent	Within cluster: Dependent i-i-d sample: Identically distributed
Between cluster: Heterogenous	
U-i-d sample: Equal possibility	Disaggregated Estimates Unequal-sized strata: Unequal possibility

Potential Solutions

- Aggregated Estimates

Design-based method:

- Taylor series linearization (TSL)
- Bootstrap
- Jackknife repeated replications (JRR)
- Balanced repeated replications (BRR)

Most national/international surveys do not provide the cluster indicator.

Apply Balanced Repeated Replications to Analysis of $\alpha \beta$

Estimator

Maximum Likelihood $F_{M L}\left(\theta ; S_{n}\right)=\log |\Sigma(\theta)|+\operatorname{trace}\left[S_{n} \Sigma(\theta)^{-1}\right]-\log \left|S_{n}\right|-p$

Weighted covariance matrix

Replace S_{n} with weighted sample covariance matrix $S_{w n}$

Test Statistic

Asymptotical Normality (Bishop, 1975; Rao, 1973) $\hat{\alpha} \hat{\beta} \sim N\left(\mu, \sigma^{2}\right)$ as $\mathrm{n} \rightarrow \infty$

Use BRR Standard Errors

$$
T_{\mathrm{BRR}}=\frac{\hat{\alpha} \hat{\beta}}{\mathrm{SE}_{\mathrm{BRR}}(\hat{\alpha} \hat{\beta})} \stackrel{H_{0}}{\sim} N(0,1) \text { as } \mathrm{n} \rightarrow \infty
$$

$$
\mathrm{SE}_{\mathrm{BRR}}(\hat{\alpha} \hat{\beta})=\sqrt{\frac{1}{R(1-f)^{2}} \sum_{r=1}^{R}\left(\hat{\alpha}_{r} \hat{\beta}_{r}-\hat{\alpha}_{0} \hat{\beta}_{0}\right)^{2}}
$$

Section 4

Software \& Application

Software Packages

- R package 'MedSurvey’ (Feb. 2019)

Flexible and complex models
https://CRAN.R-project.org/package=MedSurvey

Application

Data:

2014-15 CPS Tobacco Use Supplement (TUS;
U.S. Department of Commerce and U.S. Census Bureau 2016), employed adult daily smokers (Non-Hispanic White males only).

Survey Design:
Balanced Repeated

Replications $R=160$.
$f=0.5$ is suggested.

```
## Package and options
1ibrary("MedSurvey")
## Data and related information
MedData
R <- 160
wgtnames <- paste("repwgt", seq(0,R,by=1), sep="")
mwgtname=wgtnames[1]
repwgtnames=wgtnames[2:(R+1)]
```

```
## Sepcify the model 1
mode11 <- '
    numcg ~ u0*1 + gamma0*workban + b1*sp_ad7tban + b2*sp_kidsban
    sp_ad7tban ~ u1*1 + a1*workban
    sp_kidsban ~ u2*1 + a2*workban
    sp_adltban ~~ sp_kidsban
    a1b1 := a1*b1
    a2b2 := a2*b2
    tota1 := gamma0 + (a1*b1) + (a2*b2)
```

\#\# Fit the mode1 1
fit. BRR <- med.fit. BRR(mode1=mode11, data=MedData, mwgtname=mwgtname,
repwgtnames=repwgtnames, fayfactor=0.5, paral1e1 = 'para11e1')
|\#\# view the summary results of the mediation analysis
med.summary (fit=fit.BRR, med.eff=c('a1b1', 'a2b2'))

Results

Table 1. Tests for Mediation Effects between Smoking Ban at Work and Number of Cigarettes Smoked per Day among Male NH White Daily Smokers

Mediator	Not Weighted				BRR Weighted			
	$\hat{\alpha} \widehat{\beta}$	$\widehat{S D}$	p-value	Adjusted p-value	$\hat{\alpha} \hat{\beta}$	$\widehat{S D}_{\text {BRR }}$	p-value	Adjusted p-value
M_{1}	-0.0170	0.0066	0.010	0.020	-0.0156	0.0073	0.032	0.063
M_{2}	0.0018	0.0033	0.588	0.612	0.0004	0.0045	0.937	1.000
ote. $\begin{aligned} & M 1=\text { Sup } \\ & M 2=\text { Sup } \\ & n=2,260 \\ & \text { Adjusted } \end{aligned}$	orting Smok rting Smokin stimated po values adjus	ng Ban in ing Ban in ulation s ed for th	Adult-excl Children's ize is 3,29 multiple		Holm's me	hod (Holm	^,1979).	

Software Packages

- R package 'MedSurvey’ (Feb. 2019)

Flexible and complex models
https://CRAN.R-project.org/package=MedSurvey

- R shiny (March 2019)

User-friendly interface
https://sjbiostat.shinyapps.io/MedSurvey/

R shiny

Summary Download

Multimediation with Complex Survey Data

	Effect	Estimate	BRR SE.	P-Value	Adjusted P-Value
sp_adltban	a1b1	-0.015456	0.004574	0.000728	0.001456
sp_kidsban	a2b2	-0.005366	0.003852	0.1636	0.1636

p Value adjustment method is holm
Standard errors type is BRR SE

Look, this's our product.

Software Packages

- R package 'MedSurvey’ (Feb. 2019)

Flexible and complex models
https://CRAN.R-project.org/package=MedSurvey

- R shiny (March 2019)

User-friendly interface
https://sibiostat.shinyapps.io/MedSurvey/

- SAS macros 'MedBRR' (Dec. 2018)

Super large-scale datasets
https://github.com/YuiiaoMai/MedSurvey

References

- Bishop, Y. M., Fienberg, S. E., \& Holland, P. W. (1975). Discrete multivariate analysis: theory and practice. Cambridge, Massachusetts: Cambridge, Mass., MIT Press.
- Fay, R. E., \& Train, G. F. (1995). Aspects of survey and model-based postcensal estimation of income and poverty characteristics for states and counties. In Proceedings of the Section on Government Statistics, American Statistical Association, Alexandria, VA (pp. 154-159).
- Judkins, D. R. (1990). Fay's method for variance estimation. Journal of Official Statistics, 6(3), 223-239.
- Mai, Y., Ha, T., \& Soulakova, J. N. (2019). Multimediation Method With Balanced Repeated Replications For Analysis Of Complex Surveys. Structural Equation Modeling: A Multidisciplinary Journal.
- Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed., Vol. 2). New York, NY: John Wiley \& Sons, Inc.
- Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290-312.
- U.S. Department of Commerce, \& U.S. Census Bureau. (2016). National Cancer Institute and Food and Drug Administration co-sponsored Tobacco Use Supplement to the Current Population Survey. 201415.
- Wolter, K. (2007). Introduction to variance estimation. New York, NY: Springer.

Acknowledgements

- The research is sponsored by American Lebanese Syrian Associated Charities (ALSAC).

St. Jude Childrens Research Hospital

Finding cures. Saving children

Thank you!

