Case Studies in Interoperability: From Generic Classes to Specific Functions

Matthew N. McCall

Department of Biostatistics & Computational Biology

University of Rochester Medical Center

mnmccall.com @matthewnmccall

Origin Story: gene perturbations and cancer systems biology

Outliers mostly due to non-detects

A quick intro to PCR

Polymerase chain reaction - PCR

2 Annealing at ~68°C

3 Elongation at ca. 72 °C

Enzoklop [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

A quick intro to qPCR

Thermo Scientific, Basic Principles of qPCR

Non-detects in qPCR

Non-detects do not occur randomly

 $egin{array}{c} i & {
m gene} \ j & {
m condition} \ k & {
m sample} \end{array}$

Impute non-detects based on the following model:

$$Y_{ijk} = \begin{cases} \theta_{ij} + \delta_k + \varepsilon_{ijk} & \text{if } Z_{ijk} = 1\\ \text{non-detect} & \text{if } Z_{ijk} = 0 \end{cases}$$

$$\varepsilon_{ijk} \sim \mathbf{N}(0, \sigma^2)$$

where $heta_{ij}$ is gene expression and δ_k represents an array effect.

 $egin{array}{c} i & {
m gene} \ j & {
m condition} \ k & {
m sample} \end{array}$

Impute non-detects based on the following model:

$$Y_{ijk} = \begin{cases} \theta_{ij} + \delta_k + \varepsilon_{ijk} & \text{if } Z_{ijk} = 1\\ \text{non-detect} & \text{if } Z_{ijk} = 0 \end{cases}$$

$$\varepsilon_{ijk} \sim \mathbf{N}(0, \sigma^2)$$

where $heta_{ij}$ is gene expression and δ_k represents an array effect.

$$Pr(Z_{ijk} = 1) = \begin{cases} g(Y_{ijk}) & \text{if } Y_{ijk} < 40\\ 0 & \text{otherwise} \end{cases}$$

 $egin{array}{c} i & {
m gene} \ j & {
m condition} \ k & {
m sample} \end{array}$

Impute non-detects based on the following model:

$$Y_{ijk} = \begin{cases} \theta_{ij} + \delta_k + \varepsilon_{ijk} & \text{if } Z_{ijk} = 1\\ \text{non-detect} & \text{if } Z_{ijk} = 0 \end{cases}$$

$$\varepsilon_{ijk} \sim \mathbf{N}(0, \sigma^2)$$

where θ_{ij} is gene expression and δ_k represents an array effect.

$$Pr(Z_{ijk} = 1) = \begin{cases} g(Y_{ijk}) & \text{if } Y_{ijk} < 40\\ 0 & \text{otherwise} \end{cases}$$

For non-detects:

$$\hat{Y}_{ijk} = \mathbf{E} \left\{ Y_{ijk} \mid \texttt{non-detect}; \theta_{ij}, \delta_k, \sigma^2 \right\}$$

Remember this figure

Farewell to (most) outliers

Farewell to (most) outliers

Need something fancier when all replicates have a non-detect.

Further Reading

McCall, M. N., McMurray, H. R., Land, H., & Almudevar, A. (2014). On non-detects in qPCR data. *Bioinformatics*, *30*(16), 2310-2316.

Sherina, V., McMurray, H., Powers, W., Land, H., Love, T., & McCall, M. N. (2017). Statistical Approaches to Decreasing the Discrepancy of Non-detects in qPCR Data. *bioRxiv*, 231621.

We have a new method for one small part of an analysis pipeline.

Analysis of qPCR data

HTqPCR

Automated analysis of high-throughput qPCR data

Bioconductor version: Release (3.9)

Analysis of Ct values from high throughput quantitative real-time PCR (qPCR) assays across multiple conditions or replicates. The input data can be from spatially-defined formats such ABI TaqMan Low Density Arrays or OpenArray; LightCycler from Roche Applied Science; the CFX plates from Bio-Rad Laboratories; conventional 96- or 384-well plates; or microfluidic devices such as the Dynamic Arrays from Fluidigm Corporation. HTqPCR handles data loading, quality assessment, normalization, visualization and parametric or non-parametric testing for statistical significance in Ct values between features (e.g. genes, microRNAs).

Author: Heidi Dvinge, Paul Bertone

Maintainer: Heidi Dvinge <hdvinge at fredhutch.org>

Citation (from within R, enter citation("HTqPCR")):

Dvinge H, Bertone P (2009). "HTqPCR: High - throughput analysis and visualization of quantitative real - time PCR data in R." *Bioinformatics*, **25(24)**, 3325.

nondetects

Non-detects in qPCR data

Bioconductor version: Release (3.9)

Methods to model and impute non-detects in the results of qPCR experiments.

Author: Matthew N. McCall <mccallm at gmail.com>, Valeriia Sherina <valery.sherina at gmail.com>

Maintainer: Valeriia Sherina <valery.sherina at gmail.com>

Citation (from within R, enter citation("nondetects")):

McCall MN, McMurray H, Land H, Almudevar A (2014). "On Non-detects in qPCR Data." Bioinformatics.

Details

biocViews	<u>AssayDomain, GeneExpression, Preprocessing, Software, Technology,</u> WorkflowStep, <u>qPCR</u>
Version	2.14.0
In Bioconductor since	BioC 2.14 (R-3.1) (5 years)
License	GPL-3
Depends	R (>= 3.2), <u>Biobase</u> (>= 2.22.0)
Imports	limma, mvtnorm, utils, methods, arm, HTqPCR(>= 1.16.0)
LinkingTo	
Suggests	<pre>knitr, rmarkdown, BiocStyle(>= 1.0.0), RUnit, BiocGenerics(>= 0.8.0)</pre>

<pre>> library(nondetects)</pre>					
> data(sagmb2011)					
> sagmb2011					
An object of class "qPCRset"					
Size: 67 features, 55 samples					
Feature types:					
Feature names:	Abat Abcal Ank				
Feature classes:					
Feature categories:	OK, Undetermined				
Sample names:	CK1.Vector CK2.Vector DD2.Vector				

> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names: Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Undetermined
Sample names: CK1.Vector CK2.Vector DD2.Vector ...

> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")</pre> $\sim 0 + nrep$ <environment: 0x11ad6ef00> [1] "1 / 100" -5724.6243728202 [1] "2 / 100" -5692.91657561198 [1] "3 / 100" -5685.33706725388 [1] "4 / 100" -5681.66921373554 [1] "5 / 100" -5679.73392983577 [1] "6 / 100" -5678.7036584038 [1] "7 / 100" -5678.15423981277[1] "Single"

> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names: Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Undetermined
Sample names: CK1.Vector CK2.Vector DD2.Vector ...

> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")</pre>

> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names: Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Imputed
Sample names: CK1.Vector CK2.Vector DD2.Vector ...

> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")</pre>

<pre>> sagmb2011</pre>	
An object of class "qPCRs	set"
Size: 67 features, 55 sc	amples
Feature types:	
Feature names:	Abat Abcal Ank
Feature classes:	
Feature categories: 🤇	OK, Imputed
Sample names:	CK1.Vector CK2.Vector DD2.Vector

> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names: Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Undetermined
Sample names: CK1.Vector CK2.Vector DD2.Vector ...

> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")</pre>

Are there drawbacks?

Questions about packages other than your own

Evening,

I have a txt file with 26 samples(rows) with 30 microRNA (columns) - how do I convert this into qPCRset object to do further analysis on the "nondetect" R package?

Questions about packages other than your own

Evening,

I have a txt file with 26 samples(rows) with 30 microRNA (columns) - how do I convert this into qPCRset object to do further analysis on the "nondetect" R package?

Dear Mr. McCall

I would like to use the "qpcrImpute" function on my data. My problem is that I cannot figure out how to format my data to the class qPCRset.

Relying on others to maintain software

I am <u>not</u> blaming the authors of HTqPCR.

There is very little support in terms of recognition and funding for maintaining a software package.

Case study #2 and a potential path forward

A generalized overview of the 530 cells and tissues included in this study.

Matthew N. McCall et al. Genome Res. 2017;27:1769-1781

"microRNA human"

An integrated expression atlas of miRNAs and their promoters in human and mouse

Derek de Rie, Imad Abugessaisa […] Michiel J L de Hoon ⊠

Nature Biotechnology **35**, 872–878 (2017) | Download Citation *↓*

334 samples; 64 cell types

9290–9301 Nucleic Acids Research, 2017, Vol. 45, No. 16 doi: 10.1093/nar/gkx706

Published online 11 August 2017

A comprehensive, cell specific microRNA catalogue of human peripheral blood

Simonas Juzenas^{1,2,†}, Geetha Venkatesh^{1,†}, Matthias Hübenthal^{1,†}, Marc P. Hoeppner¹, Zhipei Gracie Du¹, Maren Paulsen¹, Philip Rosenstiel¹, Philipp Senger³, Martin Hofmann-Apitius³, Andreas Keller⁴, Limas Kupcinskas^{2,5}, Andre Franke^{1,*} and Georg Hemmrich-Stanisak^{1,*}

450 samples; 7 cell types, 3 tissues

Composition of colon tissue samples

Differences in UC vs others

How best to share these data?

SummarizedExperiment

DOI: <u>10.18129/B9.bioc.SummarizedExperiment</u>

SummarizedExperiment container

Bioconductor version: Release (3.9)

The SummarizedExperiment container contains one or more assays, each represented by a matrix-like object of numeric or other mode. The rows typically represent genomic ranges of interest and the columns represent samples.

Author: Martin Morgan, Valerie Obenchain, Jim Hester, Hervé Pagès

Maintainer: Bioconductor Package Maintainer <maintainer at bioconductor.org>

Citation (from within R, enter citation("SummarizedExperiment")):

Morgan M, Obenchain V, Hester J, Pagès H (2019). *SummarizedExperiment: SummarizedExperiment container*. R package version 1.14.0.

SummarizedExperiment

DOI: <u>10.18129/B9.bioc.SummarizedExperiment</u>

SummarizedExperiment container

Bioconductor version: Release (3.9)

The SummarizedExperiment container contains one or more assays, each represented by a matrix-like object of numeric or other mode. The rows typically represent genomic ranges of interest and the columns represent samples.

Author: Martin Morgan, Valerie Obenchain, Jim Hester, Hervé Pagès

Maintainer: Bioconductor Package Maintainer < maintainer at bioconductor.org >

Citation (from within R, enter citation("SummarizedExperiment")):

Morgan M, Obenchain V, Hester J, Pagès H (2019). *SummarizedExperiment: SummarizedExperiment container*. R package version 1.14.0.

microRNAome

SummarizedExperiment for the microRNAome project

Bioconductor version: Release (3.9)

This package provides a SummarizedExperiment object of read counts for microRNAs across tissues, celltypes, and cancer cell-lines. The read count matrix was prepared and provided by the author of the study: Towards the human cellular microRNAome.

Author: Matthew N. McCall <mccallm at gmail.com>, Marc K. Halushka <mhalush1 at jhmi.edu>

Maintainer: Matthew N. McCall <mccallm at gmail.com>

Citation (from within R, enter citation("microRNAome")):

McCall MN, Kim M, Adil M, Patil AH, Lu Y, Mitchell CJ, Leal-Rojas P, Xu J, Kumar M, Dawson VL, Dawson TM, Baras AS, Rosenberg AZ, Arking DE, Burns KH, Pandey A, Halushka M (2017). "Toward the human cellular microRNAome." *Genome Research*. doi: <u>10.1101/gr.222067.117</u>, http://genome.cshlp.org/content/27/10/1769.full.pdf, <u>http://genome.cshlp.org/content/27/10/1769</u>.

```
> library(microRNAome)
> data("microRNAome")
> microRNAome
class: SummarizedExperiment
dim: 2546 1312
metadata(1): ''
assays(1): counts
rownames(2546): hsa-let-7a-2-3p hsa-let-7a-3p ... hsa-miR-99b-3p
hsa-miR-99b-5p
rowData names(0):
colnames(1312): SRR2296788 ERR738403 ... SRR5756261 SRR5756262
colData names(14): sample_id organ ... sequencer flagged
```

```
> library(microRNAome)
> data("microRNAome")
> microRNAome
class: SummarizedExperiment
dim: 2546 1312
metadata(1): ''
assays(1): counts
rownames(2546): hsa-let-7a-2-3p hsa-let-7a-3p ... hsa-miR-99b-3p
hsa-miR-99b-5p
rowData names(0):
colnames(1312): SRR2296788 ERR738403 ... SRR5756261 SRR5756262
colData names(14): sample_id organ ... sequencer flagged
```

> table(microRNAome\$sample_category)

cancer_cell_line	cell_type	tissue		
100	791	421		

> table(microRNAome\$sequencer)

AB Solid 3	AB Solid 4	GA
4	4	8
GA II	GA IIx	HiSeq 1000
42	83	24
HiSeq 2000	HISeq 2000 (Maybe GA IIx)	HiSeq 2500
610	9	524
HiSeq 2500 (maybe GA IIx)	Ion Torrent	MiSeq
2	1	1

Acknowledgements

- University of Rochester
 - Zachary Brehm
 - Winslow Powers
 - Qidi Yang
 - Kailey Ferger
- Johns Hopkins University
 - Marc Halushka
 - Alexander Baras

- Valeriia Sherina
- Hartmut Land
- Helene McMurray
- Anthony Almudevar

- Avi Rosenberg
- Dan Arking

THANK YOU

