Case Studies in Interoperability:
 From Generic Classes to Specific Functions

Matthew N. McCall

Department of Biostatistics \& Computational Biology
University of Rochester Medical Center
mnmccall.com
@matthewnmccall

Origin Story: gene perturbations and cancer systems biology

Outliers mostly due to non-detects

A quick intro to PCR

Polymerase chain reaction - PCR
Denaturation at $94-96^{\circ} \mathrm{C}$Annealing at $\sim 68^{\circ} \mathrm{C}$
(3) Elongation at ca. $72{ }^{\circ} \mathrm{C}$

A quick intro to qPCR

Thermo Scientific, Basic Principles of qPCR

Non-detects in qPCR

Non-detects do not occur randomly

$$
\begin{gathered}
Y_{i j k}= \begin{cases}\theta_{i j}+\delta_{k}+\varepsilon_{i j k} & \text { if } Z_{i j k}=1 \\
\text { non-detect } & \text { if } Z_{i j k}=0\end{cases} \\
\varepsilon_{i j k} \sim \mathbf{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

where $\theta_{i j}$ is gene expression and δ_{k} represents an array effect.

$$
\begin{gathered}
Y_{i j k}= \begin{cases}\theta_{i j}+\delta_{k}+\varepsilon_{i j k} & \text { if } Z_{i j k}=1 \\
\text { non-detect } & \text { if } Z_{i j k}=0\end{cases} \\
\varepsilon_{i j k} \sim \mathbf{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

where $\theta_{i j}$ is gene expression and δ_{k} represents an array effect.

$$
\operatorname{Pr}\left(Z_{i j k}=1\right)= \begin{cases}g\left(Y_{i j k}\right) & \text { if } Y_{i j k}<40 \\ 0 & \text { otherwise }\end{cases}
$$

Impute non-detects based on the following model:

$$
\begin{gathered}
Y_{i j k}= \begin{cases}\theta_{i j}+\delta_{k}+\varepsilon_{i j k} & \text { if } Z_{i j k}=1 \\
\text { non-detect } & \text { if } Z_{i j k}=0\end{cases} \\
\varepsilon_{i j k} \sim \mathbf{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

where $\theta_{i j}$ is gene expression and δ_{k} represents an array effect.

$$
\operatorname{Pr}\left(Z_{i j k}=1\right)= \begin{cases}g\left(Y_{i j k}\right) & \text { if } Y_{i j k}<40 \\ 0 & \text { otherwise }\end{cases}
$$

For non-detects:

$$
\hat{Y}_{i j k}=\mathbf{E}\left\{Y_{i j k} \mid \text { non-detect } ; \theta_{i j}, \delta_{k}, \sigma^{2}\right\}
$$

Remember this figure

Farewell to (most) outliers

Farewell to (most) outliers

Further Reading

McCall, M. N., McMurray, H. R., Land, H., \& Almudevar, A. (2014). On non-detects in qPCR data. Bioinformatics, 30(16), 2310-2316.

Sherina, V., McMurray, H., Powers, W., Land, H., Love, T., \& McCall, M. N. (2017). Statistical Approaches to Decreasing the Discrepancy of Non-detects in qPCR Data. bioRxiv, 231621.

We have a new method for one small part of an analysis pipeline.

Analysis of qPCR data

Automated analysis of high-throughput qPCR data

Bioconductor version: Release (3.9)
Analysis of Ct values from high throughput quantitative real-time PCR (qPCR) assays across multiple conditions or replicates. The input data can be from spatially-defined formats such ABI TaqMan Low Density Arrays or OpenArray; LightCycler from Roche Applied Science; the CFX plates from Bio-Rad Laboratories; conventional 96- or 384-well plates; or microfluidic devices such as the Dynamic Arrays from Fluidigm Corporation. HTqPCR handles data loading, quality assessment, normalization, visualization and parametric or non-parametric testing for statistical significance in Ct values between features (e.g. genes, microRNAs).

Author: Heidi Dvinge, Paul Bertone
Maintainer: Heidi Dvinge <hdvinge at fredhutch.org>
Citation (from within R, enter citation("HTqPCR")):
Dvinge H, Bertone P (2009). "HTqPCR: High - throughput analysis and visualization of quantitative real - time PCR data in R." Bioinformatics, 25(24), 3325.

nondetects

Non-detects in qPCR data

Bioconductor version: Release (3.9)
Methods to model and impute non-detects in the results of qPCR experiments.
Author: Matthew N. McCall <mccallm at gmail.com>, Valeriia Sherina <valery.sherina at gmail.com> Maintainer: Valeriia Sherina <valery.sherina at gmail.com>

Citation (from within R, enter citation("nondetects")):
McCall MN, McMurray H, Land H, Almudevar A (2014). "On Non-detects in qPCR Data." Bioinformatics.

Details

biocViews	AssayDomain, GeneExpression, Preprocessing, Software, Technology, WorkflowStep, qPCR
Version	2.14.0
In Bioconductor since	BioC 2.14 (R-3.1) (5 years)
License	GPL-3
Depends	R (>= 3.2), Biobase($>=2.22 .0$)
Imports	limma, mvtnorm, utils, methods, arn, HTqPCR $(>=1.16 .0)$
LinkingTo	
Suggests	knitr, rmarkdown, BiocStyle(>=1.0.0), RUnit, BiocGenerics(>=0.8.0)

> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names:
Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Undetermined
Sample names:
CK1.Vector CK2.Vector DD2.Vector
> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names:
Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Undetermined
Sample names:
CK1.Vector CK2.Vector DD2.Vector ...
> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")
~0 + nrep
<environment: 0x11ad6ef00>
[1] "1 / 100"
-5724.6243728202
[1] "2 / 100"
-5692.91657561198
[1] "3 / 100"
-5685. 33706725388
[1] "4 / 100"
-5681.66921373554
[1] "5 / 100"
-5679.73392983577
[1] "6 / 100"
-5678.7036584038
[1] "7 / 100"
-5678.15423981277
[1] "Single"
> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names: Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Undetermined
Sample names:
CK1.Vector CK2.Vector DD2.Vector ...

```
> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")
```

> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names:
Feature classes:
Feature categories:
Sample names:

Abat Abca1 Ank ...

OK, Imputed
CK1.Vector CK2.Vector DD2.Vector ...
> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names:
Feature classes:
Feature categories
Sample names:
Abat Abca1 Ank ...

OK, Undetermined
CKI.Vector CKZ.Vector DD2.Vector ...

```
> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")
```

> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names:
Feature classes:
Feature categories:
Sample names:
Abat Abca1 Ank ...

OK, Imputed
CK1.Vector CK2.Vector DD2.Vector ...
> library(nondetects)
> data(sagmb2011)
> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names: Abat Abcal Ank ...
Feature classes:
Feature categories: OK, Undetermined
Sample names: CK1.Vector CK2.Vector DD2.Vector ...

```
> sagmb2011 <- qpcrImpute(sagmb2011, groupVars="sampleType")
```

> sagmb2011
An object of class "qPCRset"
Size: 67 features, 55 samples
Feature types:
Feature names: Abat Abca1 Ank ...
Feature classes:
Feature categories: OK, Imputed
Sample names:
CK1.Vector CK2.Vector DD2.Vector ...
> getCtHistory(sagmb2011)
history
1
Manually created qPCRset object.
2 qpcrImpute(object = sagmb2011, groupVars = "sampleType")

Are there drawbacks?

Questions about packages other than your own

Evening,
I have a txt file with 26 samples (rows) with 30 microRNA (columns) - how do I convert this into qPCRset object to do further analysis on the "nondetect" R package?

Questions about packages other than your own

Evening,
I have a txt file with 26 samples (rows) with 30 microRNA (columns) - how do I convert this into qPCRset object to do further analysis on the "nondetect" R package?

Dear Mr. McCall
I would like to use the "qpcrImpute" function on my data. My problem is that I cannot figure out how to format my data to the class qPCRset.

Relying on others to maintain software

Bioconductor
OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Showing: htqpcr • reset

I am not blaming the authors of HTqPCR.

There is very little support in terms of recognition and funding for maintaining a software package.

Case study \#2

 and a potential path forward

A generalized overview of the $\mathbf{5 3 0}$ cells and tissues included in this study.

Matthew N. McCall et al. Genome Res. 2017;27:1769-1781

Sequence Read Archive
"microRNA human"

An integrated expression atlas of miRNAs and their promoters in human and mouse

Derek de Rie, Imad Abugessaisa [...] Michiel J L de Hoon
Nature Biotechnology 35, 872-878 (2017) | Download Citation \downarrow
334 samples; 64 cell types

9290-9301 Nucleic Acids Research, 2017, Vol. 45, No. 16
Published online 11 August 2017

A comprehensive, cell specific microRNA catalogue of

 human peripheral bloodSimonas Juzenas ${ }^{1,2, \dagger}$, Geetha Venkatesh ${ }^{1, \dagger}$, Matthias Hübenthal ${ }^{1, \dagger}$, Marc P. Hoeppner ${ }^{1}$, Zhipei Gracie Du ${ }^{1}$, Maren Paulsen ${ }^{1}$, Philip Rosenstiel ${ }^{1}$, Philipp Senger ${ }^{3}$,
Martin Hofmann-Apitius ${ }^{3}$, Andreas Keller ${ }^{4}$, Limas Kupcinskas ${ }^{2,5}$, Andre Franke ${ }^{1,{ }^{, 4}}$ and Georg Hemmrich-Stanisak ${ }^{1, *}$


```
miR-15a-5p/15b-5p/106b-5p
miR-146b-5p
miR-342-3p
miR-142-3p/223-3p
miR-126-3p
miR-126-5p
miR-200b-3p/200c-3p
miR-205-5p/215-5p/192-5p
miR-375
miR-379-5p/7-5p
miR-150-5p
miR-155-5p
miR-24-3p
miR-185-3p
miR-211-5p
miR-143-3p
miR-128-3p/129-5p/9-5p
miR-302a-5p/302b-3p
miR-302c-3p/302d-3p
miR-486-3p/486-5p
miR-451a/144-5p
miR-204-5p/335-5p
miR-206/1-3p
miR-133a-3p
miR-21
miR-107/103a-3p
```


Composition of

colon tissue samples

How best to share these data?

SummarizedExperiment

platforms all
build

warnings

posts $5 / 0.8 / 3 / 0$ in Bioc 3.5 years

DOI: 10.18129/B9.bioc.SummarizedExperiment if y

SummarizedExperiment container

Bioconductor version: Release (3.9)
The SummarizedExperiment container contains one or more assays, each represented by a matrix-like object of numeric or other mode. The rows typically represent genomic ranges of interest and the columns represent samples.

Author: Martin Morgan, Valerie Obenchain, Jim Hester, Hervé Pagès
Maintainer: Bioconductor Package Maintainer <maintainer at bioconductor.org>
Citation (from within R, enter citation("SummarizedExperiment")):
Morgan M, Obenchain V, Hester J, Pagès H (2019). SummarizedExperiment: SummarizedExperiment container. R package version 1.14.0.

SummarizedExperiment

platforms all
build

warnings

posts $5 / 0.8 / 3 / 0$ in Bioc 3.5 years
updated before release

DOI: 10.18129/B9.bioc.SummarizedExperiment if y

SummarizedExperiment container

Bioconductor version: Release (3.9)
The SummarizedExperiment container contains one or more assays, each represented by a matrix-like object of numeric or other mode. The rows typically represent genomic ranges of interest and the columns represent-samples.

Author: Martin Morgan, Valerie Obenchain, Jim Hester, Hervé Pagès
Maintainer: Bioconductor Package Maintainer <maintainer at bioconductor.org>
Citation (from within R, enter citation("sunlmarizedexperiment")):
Morgan M, Obenchain V, Hester J, Pagès H (2019). SummarizedExperiment: SummarizedExperiment container. R package version 1.14.0.

SummarizedExperiment

metadata(se)
metadata(se)\$modelFormula

platforms all

```
rank 301/371 posts 0 build ok
```

updated before release
DOI: 10.18129/B9.bioc.microRNAome f y

SummarizedExperiment for the microRNAome project

Bioconductor version: Release (3.9)
This package provides a SummarizedExperiment object of read counts for microRNAs across tissues, celltypes, and cancer cell-lines. The read count matrix was prepared and provided by the author of the study: Towards the human cellular microRNAome.

Author: Matthew N. McCall <mccallm at gmail.com>, Marc K. Halushka <mhalush1 at jhmi.edu>
Maintainer: Matthew N. McCall <mccallm at gmail.com>
Citation (from within R, enter citation("microRNAome")):
McCall MN, Kim M, Adil M, Patil AH, Lu Y, Mitchell CJ, Leal-Rojas P, Xu J, Kumar M, Dawson VL, Dawson TM, Baras AS, Rosenberg AZ, Arking DE, Burns KH, Pandey A, Halushka M (2017). "Toward the human cellular microRNAome." Genome Research. doi: 10.1101/gr.222067.117, http://genome.cshlp.org/content/27/10/1769.full.pdf, http://genome.cshlp.org/content/27/10/1769.
> library(microRNAome)
> data("microRNAome")
> microRNAome
class: SummarizedExperiment
dim: 25461312
metadata(1):
assays(1): counts
rownames(2546): hsa-let-7a-2-3p hsa-let-7a-3p ... hsa-miR-99b-3p hsa-miR-99b-5p
rowData names(0):
colnames(1312): SRR2296788 ERR738403 ... SRR5756261 SRR5756262
colData names(14): sample_id organ ... sequencer flagged

```
> library(microRNAome)
> data("microRNAome")
> microRNAome
class: SummarizedExperiment
dim: 2546 1312
metadata(1):
assays(1): counts
rownames(2546): hsa-let-7a-2-3p hsa-let-7a-3p ... hsa-miR-99b-3p
    hsa-miR-99b-5p
rowData names(0):
colnames(1312): SRR2296788 ERR738403 ... SRR5756261 SRR5756262
colData names(14): sample_id organ ... sequencer flagged
> table(microRNAome$sample_category)
\begin{tabular}{rrr} 
cancer_cell_line & cell_type & tissue \\
100 & 791 & 421
\end{tabular}
> table(microRNAome$sequencer)
\begin{tabular}{rrr} 
AB Solid 3 & AB Solid 4 & GA \\
4 & 4 & 8 \\
GA II & GA IIx & HiSeq 1000 \\
42 & 83 & 24 \\
HiSeq 2000 HISeq 2000 (Maybe GA IIx) & HiSeq 2500 \\
610 & 9 & 524 \\
ybe GA IIx) & Ion Torrent & MiSeq \\
2 & 1 & 1
\end{tabular}
```


Acknowledgements

- University of Rochester
- Zachary Brehm
- Winslow Powers
- Qidi Yang
- Kailey Ferger
- Johns Hopkins University
- Marc Halushka
- Alexander Baras
- Valeriia Sherina
- Hartmut Land
- Helene McMurray
- Anthony Almudevar
- Avi Rosenberg
- Dan Arking

THANK YOU

