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Subproblem: Given data collected by a logging policy, estimate reward of a target policy

Logging Target Idea: Use partial matches!
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- Uniform Q gives O(B) variance
- Immediately gives decent algorithm (eps-greedy)
« We need more refined approach
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Techniques

y(f, aﬁ)

ri(Ag, xy) = Zy(ag) + noise
0

With logging ¢ can write

y = arg mui)n E.[(1w — r)?|2]
So with (A¢, 7¢) estimate

G = (Eu[1a14]) 14,7

For policy 7

P, ) = 13 D
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Policy Optimization
- Use Pl estimator to obtain, with 2
0 = (Eu[1a15]) 14,7,

 Akin to supervised learning to rank dataset
* Train L2R model via regression

Metric LambdaMART Random

NDCG 0.152

0.438
ERR — 0.096 0.311 0.321

Pl finds good targets to optimize metric!
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Naive CB Semibandits Combinatorial

Off-Policy Eval BL B BL

SCUEE NS /BLT log(|)) /BT log(I]) 7%/ (BLlog(M]))"/?

Parameters: T rounds, B simple actions, composite action length L

Empirically

« Semibandits — With rich policy class, best performance

« Off-Policy Eval — Works in practice, even without linearity
* Off-Policy Opt — Finds better targets than supervision!

Open
+ Efficient CCB withv/T’ regret



