Online and Offline Experimentation in Complex Systems

Akshay Krishnamurthy Microsoft Research, NYC <u>akshay@cs.umass.edu</u>

Learn from interacting with users in production

- Learn from interacting with users in production
- No counterfactuals

- Learn from interacting with users in production
- No counterfactuals
- Exploration vs Exploitation

- Learn from interacting with users in production
- No counterfactuals
- Exploration vs Exploitation
- Optimize whole-page layout

Given policy π :

- 1. Use π for 1/2 of traffic (at random)
- 2. Evaluate π 's quality (click prob.)

Given policy π :

- 1. Use π for 1/2 of traffic (at random)
- 2. Evaluate π 's quality (click prob.)

Two main issues:

Given policy π :

- 1. Use π for 1/2 of traffic (at random)
- 2. Evaluate π 's quality (click prob.)

Two main issues:

1. Poor performance while evaluating policies

Given policy π :

- 1. Use π for 1/2 of traffic (at random)
- 2. Evaluate π 's quality (click prob.)

Two main issues:

- 1. Poor performance while evaluating policies
- 2. Requires $O(|\Pi|)$ samples to evaluate $|\Pi|$ policies

Given policy π :

- 1. Use π for 1/2 of traffic (at random)
- 2. Evaluate π 's quality (click prob.)

Two main issues:

- 1. Poor performance while evaluating policies
- 2. Requires $O(|\Pi|)$ samples to evaluate $|\Pi|$ policies

Can do exponentially better with contextual bandits!

 Collect dataset by serving content at random

- Collect dataset by serving content at random
- For each policy, estimate
 performance by taking
 samples where we used its
 recommendation

- Collect dataset by serving content at random
- For each policy, estimate
 performance by taking
 samples where we used its
 recommendation

With K actions and $|\Pi|$ policies, we need $O(K\log|\Pi|)$ samples

- 1.Observe context
- 2.Play action
- 3. Observe reward

- 1. Observe context x_t
- 2.Play action
- 3. Observe reward

- 1. Observe context x_t
- 2.Play action a_t
- 3. Observe reward

- 1. Observe context x_t
- 2.Play action a_t
- 3. Observe reward $r_t(a_t, x_t)$

$$r_t = \# \text{ clicks}$$

On each of T rounds:

- 1. Observe context x_t
- 2.Play action a_t
- 3. Observe reward $r_t(a_t, x_t)$

K = number of actions

$$r_t = \# \text{ clicks}$$

On each of T rounds:

- 1. Observe context x_t
- 2.Play action a_t
- 3. Observe reward $r_t(a_t, x_t)$

K = number of actions

$$r_t = \# \text{ clicks}$$

$$\operatorname{Regret}(T,\Pi) = \max_{\pi \in \Pi} \operatorname{Reward}(T,\pi) - \operatorname{LearnerReward}(T)$$

On each of T rounds:

- 1. Observe context x_t
- 2.Play action a_t
- 3. Observe reward $r_t(a_t, x_t)$

K = number of actions

$$r_t = \# \text{ clicks}$$

$$\operatorname{Regret}(T,\Pi) = \max_{\pi \in \Pi} \operatorname{Reward}(T,\pi) - \operatorname{LearnerReward}(T)$$

Fact: Can get $\sqrt{KT\log |\Pi|}$ regret.

On each of T rounds:

- 1. Observe context x_t
- 2.Play action a_t
- 3. Observe reward $r_t(a_t, x_t)$

K = number of actions

$$r_t = \# \text{ clicks}$$

$$\operatorname{Regret}(T,\Pi) = \max_{\pi \in \Pi} \operatorname{Reward}(T,\pi) - \operatorname{LearnerReward}(T)$$

A/B testing gets $(|\Pi|)^{1/3}T^{2/3}$ Fact: Can get $\sqrt{KT\log|\Pi|}$ regret. Offline Eval gets $(K\log|\Pi|)^{1/3}T^{2/3}$

On each of T rounds:

- 1. Observe context x_t
- 2.Play action a_t
- 3. Observe reward $r_t(a_t, x_t)$

K = number of actions

$$r_t = \# \text{ clicks}$$

$$\operatorname{Regret}(T,\Pi) = \max_{\pi \in \Pi} \operatorname{Reward}(T,\pi) - \operatorname{LearnerReward}(T)$$

A/B testing gets $(|\Pi|)^{1/3}T^{2/3}$ Fact: Can get $\sqrt{KT\log|\Pi|}$ regret. Offline Eval gets $(K\log|\Pi|)^{1/3}T^{2/3}$

Exponential with combinatorial action space!

- 1.Observe context
- 2.Play action
- 3. Observe features
- 4. Observe reward

- 1. Observe context x_t
- 2.Play action
- 3. Observe features
- 4. Observe reward

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features
- 4. Observe reward

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

click

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

click

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

click

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

Question: Improve performance by leveraging reward structure + additional feedback?

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

click

Question: Improve performance by leveraging reward structure + additional feedback? Challenges:

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

click

Question: Improve performance by leveraging reward structure + additional feedback? Challenges:

Off-policy evaluation?

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

click

Question: Improve performance by leveraging reward structure + additional feedback? Challenges:

- Off-policy evaluation?
- Explore vs Exploit?

Contextual Semibandits

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Observe features $\{y(a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

click

Question: Improve performance by leveraging reward structure + additional feedback? Challenges:

- Off-policy evaluation?
- Explore vs Exploit?
- Computational Efficiency?

Theorem: Efficient algorithm with $\sqrt{BT\log(|\Pi|)}$ regret

Theorem: Efficient algorithm with $\sqrt{BT \log(|\Pi|)}$ regret

- Exponentially better than $\sqrt{B^L T \log(|\Pi|)}$ for naive contextual bandits Computationally efficient with rich policy classes

Theorem: Efficient algorithm with $\sqrt{BT \log(|\Pi|)}$ regret

- Exponentially better than $\sqrt{B^L T \log(|\Pi|)}$ for naive contextual bandits Computationally efficient with rich policy classes

[Krishnamurthy, Agarwal, Dudik. NeurIPS 2016]

Theorem: Efficient algorithm with $\sqrt{BT \log(|\Pi|)}$ regret

Parameters: T rounds, B simple actions, composite action length L

- Exponentially better than $\sqrt{B^L T \log(|\Pi|)}$ for naive contextual bandits Computationally efficient with rich policy classes

[Krishnamurthy, Agarwal, Dudik. NeurIPS 2016]

Theorem: Efficient algorithm with $\sqrt{BT \log(|\Pi|)}$ regret

- Exponentially better than $\sqrt{B^L T \log(|\Pi|)}$ for naive contextual bandits Computationally efficient with rich policy classes

[Krishnamurthy, Agarwal, Dudik. NeurIPS 2016]

Theorem: Efficient algorithm with $\sqrt{BT \log(|\Pi|)}$ regret

- Exponentially better than $\sqrt{B^L T \log(|\Pi|)}$ for naive contextual bandits Computationally efficient with rich policy classes

[Krishnamurthy, Agarwal, Dudik. NeurIPS 2016]

Theorem: Efficient algorithm with $\sqrt{BT \log(|\Pi|)}$ regret

- Exponentially better than $\sqrt{B^L T \log(|\Pi|)}$ for naive contextual bandits Computationally efficient with rich policy classes

[Krishnamurthy, Agarwal, Dudik. NeurIPS 2016]

Subproblem: Given data collected by a logging policy, estimate reward of a target policy

Idea: Use partial matches!

Subproblem: Given data collected by a logging policy, estimate reward of a target policy

Idea: Use partial matches!

If
$$A \sim Q(\cdot|x)$$

$$\hat{y}(a) = \frac{y(a)\mathbf{1}(a \in A)}{Q(a \in A|x)}$$

$$\hat{r}(\pi, x) = \sum_{a \in \pi(x)} \hat{y}(a)$$

Subproblem: Given data collected by a logging policy, estimate reward of a target policy

Idea: Use partial matches!

If
$$A \sim Q(\cdot|x)$$

$$\hat{y}(a) = \frac{y(a)\mathbf{1}(a \in A)}{Q(a \in A|x)}$$

$$\hat{r}(\pi, x) = \sum_{a \in \pi(x)} \hat{y}(a)$$

Uniform Q gives O(B) variance

Subproblem: Given data collected by a logging policy, estimate reward of a target policy

Idea: Use partial matches!

If
$$A \sim Q(\cdot|x)$$

$$\hat{y}(a) = \frac{y(a)\mathbf{1}(a \in A)}{Q(a \in A|x)}$$

$$\hat{r}(\pi, x) = \sum_{a \in \pi(x)} \hat{y}(a)$$

- Uniform Q gives O(B) variance
- Immediately gives decent algorithm (eps-greedy)

Subproblem: Given data collected by a logging policy, estimate reward of a target policy

Idea: Use partial matches!

If
$$A \sim Q(\cdot|x)$$

$$\hat{y}(a) = \frac{y(a)\mathbf{1}(a \in A)}{Q(a \in A|x)}$$

$$\hat{r}(\pi, x) = \sum_{a \in \pi(x)} \hat{y}(a)$$

- Uniform Q gives O(B) variance
- Immediately gives decent algorithm (eps-greedy)
- We need more refined approach

- 1.Observe context
- 2.Play action
- 3. Unobserved features
- 4. Observe reward

- 1. Observe context x_t
- 2.Play action
- 3. Unobserved features
- 4. Observe reward

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. Unobserved features
- 4. Observe reward

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. *Unobserved* features $\{y(\ell, a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. *Unobserved* features $\{y(\ell, a_\ell)\}_{\ell=1}^L$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(\ell, a_{\ell}) + \text{noise}$$

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. *Unobserved* features $\{y(\ell, a_{\ell})\}_{\ell=1}^{L}$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(\ell, a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. *Unobserved* features $\{y(\ell, a_{\ell})\}_{\ell=1}^{L}$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(\ell, a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

Question: Improve performance by leveraging reward structure?

On each of T rounds:

- 1. Observe context x_t
- 2.Play action $A_t = (a_1, \dots, a_L)$
- 3. *Unobserved* features $\{y(\ell, a_{\ell})\}_{\ell=1}^{L}$
- 4. Observe reward

$$r_t(A_t, x_t) = \sum_{\ell} y(\ell, a_{\ell}) + \text{noise}$$

B = number of simple actions

L = composite action length

Question: Improve performance by leveraging reward structure?

Challenges:

- Off-policy evaluation?
- Explore vs Exploit?
- Computational Efficiency?

Subproblem: Given data collected by logging policy, estimate reward of a target policy

Theorem: If logging close to uniform, can estimate target with BL/ϵ^2 samples

Subproblem: Given data collected by logging policy, estimate reward of a target policy

Theorem: If logging close to uniform, can estimate target with BL/ϵ^2 samples

Parameters: B simple actions, composite action length L

• Compare with $\mathcal{O}(B^L)$ naively and $\mathcal{O}(B)$ with semibandit feedback

Subproblem: Given data collected by logging policy, estimate reward of a target policy

Theorem: If logging close to uniform, can estimate target with BL/ϵ^2 samples

- Compare with $\mathcal{O}(B^L)$ naively and $\mathcal{O}(B)$ with semibandit feedback
- Gives decent eps-greedy algorithm with $T^{2/3}(BL)^{1/3}$ regret

Subproblem: Given data collected by logging policy, estimate reward of a target policy

Theorem: If logging close to uniform, can estimate target with BL/ϵ^2 samples

Parameters: B simple actions, composite action length L

- Compare with ${\cal O}(B^L)$ naively and ${\cal O}(B)$ with semibandit feedback
- Gives decent eps-greedy algorithm with $\,T^{2/3}(BL)^{1/3}\,{\rm regret}\,$ Reward: Utility Rate

Number of logged samples (n)

Subproblem: Given data collected by logging policy, estimate reward of a target policy

Theorem: If logging close to uniform, can estimate target with BL/ϵ^2 samples

Parameters: B simple actions, composite action length L

- Compare with $O(B^L)$ naively and O(B) with semibandit feedback
- Gives decent eps-greedy algorithm with $\,T^{2/3}(BL)^{1/3}\,{
 m regret}\,$ Reward: Utility Rate

Subproblem: Given data collected by logging policy, estimate reward of a target policy

Theorem: If logging close to uniform, can estimate target with BL/ϵ^2 samples

Parameters: B simple actions, composite action length L

- Compare with $O(B^L)$ naively and O(B) with semibandit feedback
- Gives decent eps-greedy algorithm with $\,T^{2/3}(BL)^{1/3}\,{\rm regret}\,$

Subproblem: Given data collected by logging policy, estimate reward of a target policy

Theorem: If logging close to uniform, can estimate target with BL/ϵ^2 samples

Parameters: B simple actions, composite action length L

- Compare with $O(B^L)$ naively and O(B) with semibandit feedback
- Gives decent eps-greedy algorithm with $\,T^{2/3}(BL)^{1/3}\,{\rm regret}\,$

Techniques

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

$$r_t(A_t, x_t) = \sum_{\ell} y(a_{\ell}) + \text{noise}$$

With logging μ can write

$$\bar{y} = \arg\min_{w} \mathbb{E}_{\mu}[(\mathbf{1}_{A}^{T}w - r)^{2}|x]$$

Experiment

Experiment

• Use PI estimator to obtain, with \boldsymbol{x}_t

$$\hat{y}_t = (\mathbb{E}_{\mu}[\mathbf{1}_A \mathbf{1}_A^T])^{\dagger} \mathbf{1}_{A_t} r_t$$

• Use PI estimator to obtain, with x_t

$$\hat{y}_t = (\mathbb{E}_{\mu}[\mathbf{1}_A \mathbf{1}_A^T])^{\dagger} \mathbf{1}_{A_t} r_t$$

Akin to supervised learning to rank dataset

$$\hat{y}_t = (\mathbb{E}_{\mu}[\mathbf{1}_A \mathbf{1}_A^T])^{\dagger} \mathbf{1}_{A_t} r_t$$

- Akin to supervised learning to rank dataset
- Train L2R model via regression

$$\hat{y}_t = (\mathbb{E}_{\mu}[\mathbf{1}_A \mathbf{1}_A^T])^{\dagger} \mathbf{1}_{A_t} r_t$$

- Akin to supervised learning to rank dataset
- Train L2R model via regression

$$\hat{y}_t = (\mathbb{E}_{\mu}[\mathbf{1}_A \mathbf{1}_A^T])^{\dagger} \mathbf{1}_{A_t} r_t$$

- Akin to supervised learning to rank dataset
- Train L2R model via regression

Metric	LambdaMART	Random	SUP	PI
NDCG	0.457	0.152	0.438	0.421

$$\hat{y}_t = (\mathbb{E}_{\mu}[\mathbf{1}_A \mathbf{1}_A^T])^{\dagger} \mathbf{1}_{A_t} r_t$$

- Akin to supervised learning to rank dataset
- Train L2R model via regression

Metric	LambdaMART	Random	SUP	PI
NDCG	0.457	0.152	0.438	0.421
ERR		0.096	0.311	0.321

• Use PI estimator to obtain, with x_t

$$\hat{y}_t = (\mathbb{E}_{\mu}[\mathbf{1}_A \mathbf{1}_A^T])^{\dagger} \mathbf{1}_{A_t} r_t$$

- Akin to supervised learning to rank dataset
- Train L2R model via regression

Metric	LambdaMART	Random	SUP	PI
NDCG	0.457	0.152	0.438	0.421
ERR		0.096	0.311	0.321

PI finds good targets to optimize metric!

Naive CB Semibandits Combinatorial

Parameters: T rounds, B simple actions, composite action length L

	Naive CB	Semibandits	Combinatorial
Off-Policy Eval	B^L	B	BL

Parameters: T rounds, B simple actions, composite action length L

	Naive CB	Semibandits	Combinatorial
Off-Policy Eval	B^L	B	BL
Explore/Exploit	$\sqrt{B^L T \log(\Pi)}$	$\sqrt{BT\log(\Pi)}$	$T^{2/3}(BL\log(\Pi))^{1/3}$

Parameters: T rounds, B simple actions, composite action length L

	Naive CB	Semibandits	Combinatorial
Off-Policy Eval	B^L	B	BL
Explore/Exploit	$\sqrt{B^L T \log(\Pi)}$	$\sqrt{BT\log(\Pi)}$	$T^{2/3}(BL\log(\Pi))^{1/3}$

Parameters: T rounds, B simple actions, composite action length L

Empirically

	Naive CB	Semibandits	Combinatorial
Off-Policy Eval	B^L	B	BL
Explore/Exploit	$\sqrt{B^L T \log(\Pi)}$	$\sqrt{BT\log(\Pi)}$	$T^{2/3}(BL\log(\Pi))^{1/3}$

Parameters: T rounds, B simple actions, composite action length L

Empirically

• Semibandits — With rich policy class, best performance

	Naive CB	Semibandits	Combinatorial
Off-Policy Eval	B^L	B	BL
Explore/Exploit	$\sqrt{B^L T \log(\Pi)}$	$\sqrt{BT\log(\Pi)}$	$T^{2/3}(BL\log(\Pi))^{1/3}$

Parameters: T rounds, B simple actions, composite action length L

Empirically

- Semibandits With rich policy class, best performance
- Off-Policy Eval Works in practice, even without linearity

	Naive CB	Semibandits	Combinatorial
Off-Policy Eval	B^L	B	BL
Explore/Exploit	$\sqrt{B^L T \log(\Pi)}$	$\sqrt{BT\log(\Pi)}$	$T^{2/3}(BL\log(\Pi))^{1/3}$

Parameters: T rounds, B simple actions, composite action length L

Empirically

- Semibandits With rich policy class, best performance
- Off-Policy Eval Works in practice, even without linearity
- Off-Policy Opt Finds better targets than supervision!

	Naive CB	Semibandits	Combinatorial
Off-Policy Eval	B^L	B	BL
Explore/Exploit	$\sqrt{B^L T \log(\Pi)}$	$\sqrt{BT\log(\Pi)}$	$T^{2/3}(BL\log(\Pi))^{1/3}$

Parameters: T rounds, B simple actions, composite action length L

Empirically

- Semibandits With rich policy class, best performance
- Off-Policy Eval Works in practice, even without linearity
- Off-Policy Opt Finds better targets than supervision!

Open

• Efficient CCB with \sqrt{T} regret