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A collection of thoughts and examples

• Complex nonlinear models with high-dimensional 
parameters 
• Mechanistic models formulated as average over 

unobserved structural complete-data model

• Statistical models that are difficult to fit because of 
dimensionality

• Algorithms
• Algorithms based on self-consistency

• EM algorithms working through missing data 
imputation

• Generalizations that are not based on missing data 
(MM, etc.)



High-dimensional models

• Functional parameters whose dimension is proportional to 
sample size (non-parametrically specified distributional 
characteristics)

• Big data sets (cancer registry data, large population trials)

• Survival analysis, categorical data analysis, multivariate 
response models



• Target function (loglikelihood    )
• Model parameters
• Estimating equation

• Estimation algorithm 
• Nonlinear programming

• Convergence
• Fixed point

• Contraction mapping

M and Z-estimation algorithms



Transforms

 Are used to simplify solutions to difficult 
problems

Laplace transform



Reversed approach

 Recognize original problem as a transform 
of a simpler one



The EM framework:
solve (1) by solving (2)

 MLE problem

 Transform



A Simple Model of Tumor 
Recurrence



Distribution of T when U is allowed 
to vary?



A cure model

 Covariates affect progression time

 Formulation without missing data
– For the Cure cumulative hazard must be 

bounded => model as const*CDF



Univariate Frailty Models



Self-consistency algorithm

 Covariates affect progression time

 Formulation without missing data
– For the Cure cumulative hazard must be 

bounded => model as const*CDF



Univariate survival MLE

 Loglikelihood

 Score equation



Self-consistency algorithm, 
univariate survival



Univariate frailty model

 Laplace transform

 The model



Imputation operator



Performance of the algorithm

Full MLE
Nonlinear programming

Self-consistency
algorithm

nltm package for R implements the algorithm for a variety 
of survival models, tried on registry data with hundreds of thousands
patients  



PHPH Model: Prostate Cancer Dose 
Escalation



Example: multinomial model

 Distribution of the response conditional on 
covariates

Restriction



Artificial Mixture Transform

 Write the model as a quasi-mixture

 Is not really a mixture since     is not a 
probability



Complete-data “likelihood”

 Poisson likelihood with an offset



Imputation: E-Step



Prostate Cancer Incidence
SEER registry data (2-500,000 
cancer cases, 11-15% of US males)

Chefo, S. and Tsodikov, A. (2009). Stage-specific cancer incidence: an artificially mixed multinomial logit model. 
Statistics in Medicine, 28/15, 2054-2076



Further examples and applications

• Multivariate (clustered) survival data
Tsodikov, A., Liu, L., and Tseng, C. (2019) Likelihood Transformations and 
Artificial Mixtures, In Statistical Modeling for Biological Systems,
Almudevar A, Oakes D, Hall J. Eds. Springer, in press.

• Missing data as a stochastic process, dynamic frailty
Rice, J., Tsodikov, A. (2017) Semiparametric Time-to-Event Modeling 
in the Presence of a Latent Progression Event, Biometrics, 73/2, 463-472.



Multivariate survival
Shared frailty model
Archimedian Copula models
 Transform

 The model



Imputation operator



Multivariate survival
M-Step

 Symmetric case: Shared cumulative hazard



Archimedian Copula Models

 Shared frailty model induces an Archimedian 
Copula



Shared frailty model vs.
Archimedian Copula models

 Frailty models is a subset of Copula models
 Copula generator does not have to be a Laplace 

transform

 is a Laplace transform iff
Completely monotonic

 Archimedian Copula model serving clusters of any 
size is a shared frailty model



Characterization of positive 
dependence

 Multivariate totally positive Copulas of order 
2, MTP2



Monotonic convergence of the 
algorithm

 Iterations

 If Archimedian Copula is MTP2, each 
iteration improves the likelihood



Performance of the algorithm for 
clustered survival data



Latent progression event

 The model

Latent event model
𝑑𝑑Λ0(𝑡𝑡|𝐳𝐳) = lim

ℎ→0
𝑃𝑃 𝑇𝑇0∈[𝑡𝑡,𝑡𝑡+ℎ)|𝑇𝑇0≥𝑡𝑡,𝐳𝐳

ℎ
= 𝜇𝜇 𝑑𝑑𝑑𝑑(𝑡𝑡)

Model for observed event given latent
𝑑𝑑Λ1(𝑡𝑡|𝑇𝑇0, 𝐳𝐳) = lim

ℎ→0
𝑃𝑃 𝑇𝑇1∈[𝑡𝑡,𝑡𝑡+ℎ)|𝑇𝑇1≥𝑡𝑡,𝑇𝑇0,𝐳𝐳

ℎ
= (𝑡𝑡 > 𝑇𝑇0)𝜂𝜂 𝑑𝑑𝑑𝑑(𝑡𝑡).



The self-consistency algorithm
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.

𝑑𝑑𝐻𝐻 𝑘𝑘+1 (𝑠𝑠) =
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑁𝑁𝑖𝑖(𝑠𝑠) + ∑𝑖𝑖=1𝑛𝑛 𝜃𝜃𝑖𝑖

𝑘𝑘 𝑠𝑠 𝑑𝑑𝐻𝐻 𝑘𝑘 (𝑠𝑠)

∑𝑖𝑖=1𝑛𝑛 Ψ𝑖𝑖
𝑘𝑘 (𝑠𝑠) + 𝜃𝜃𝑖𝑖

𝑘𝑘 (𝑠𝑠)
.

Imputed latent failures

Imputed latent risk set

Observed failures
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