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A collection of thoughts and examples

+ o Complex nonlinear models with high-dimensional
parameters
 Mechanistic models formulated as average over
unobserved structural complete-data model

e Statistical models that are difficult to fit because of
dimensionality

» Algorithms
» Algorithms based on self-consistency
« EM algorithms working through missing data
imputation
* Generalizations that are not based on missing data
(MM, etc.)



High-dimensional models

+

» Functional parameters whose dimension is proportional to
sample size (non-parametrically specified distributional
characteristics)

* Big data sets (cancer registry data, large population trials)

e Survival analysis, categorical data analysis, multivariate
response models



M and Z-estimation algorithms

‘  Target function (loglikelihood ¢.)
 Model parameters 1y

« Estimating equation v (W, w)=0

e Estimation algorithm
* Nonlinear programming
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ransforms
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m Are used to simplify solutions to difficult

problems
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Reversed approach

+

m Recognize original problem as a transform
of a simpler one
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The EM framework:
solve (1) by solving (2)
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A Simple Model of Tumor
Recurrence

+
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Distribution of T when U is allowed
to vary?
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A cure model

+

m Covariates affect progression time
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m Formulation without missing data

— For the Cure cumulative hazard must be
bounded => model as const*CDF



Univariate Frailty Models
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Self-consistency algorithm
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m Covariates affect progression time
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woded For X
m Formulation without missing data

— For the Cure cumulative hazard must be
bounded => model as const*CDF



Univariate survival MLE

m Loglikelihood
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Self-consistency algorithm,
univariate survival
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Univariate frailty model

m Laplace transform
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Imputation operator

Oh<erveol data



Performance of the algorithm
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Full MLE Self-consistency
Nonlinear programming algorithm

nitm package for R implements the algorithm for a variety
of survival models, tried on registry data with hundreds of thousands
patients



PHPH Model: Prostate Cancer Dose

Escalation
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Example: multinomial model

m Distribution of the response conditional on
covariates
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Artificial Mixture Transform

m Write the model as a quasi-mixture
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m Is not really a mixture since IS not a
probability



Complete-data “likelihood”
Jr- Poisson likelihood with an offset
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Imputation: E-Step

Lo yation
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Prostate Cancer Incidence

SEER registry data (2-500,000
cancer cases, 11-1596 of US males

Incidence Stage= LA Grade= PU

Incidence Stege= LR Grade= WM

ncidence Stage= LR Grade= WM ncidence Stage= LA Grade= PU
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Incidence Stage= D Grade= WM Incidence Stage= D Grade= PU

Chefo, S. and Tsodikov, A. (2009). Stage-specific cancer incidence: an artificially mixed multinomial logit model.
Statistics in Medicine, 28/15, 2054-2076



Further examples and applications

+

« Multivariate (clustered) survival data
Tsodikov, A., Liu, L., and Tseng, C. (2019) Likelihood Transformations and
Artificial Mixtures, In Statistical Modeling for Biological Systems,
Almudevar A, Oakes D, Hall J. Eds. Springer, in press.

* Missing data as a stochastic process, dynamic frailty
Rice, J., Tsodikov, A. (2017) Semiparametric Time-to-Event Modeling
in the Presence of a Latent Progression Event, Biometrics, 73/2, 463-472.



Multivariate survival
Shared frailty model
+Archimedian Copula models

m [ransform
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Imputation operator
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Multivariate survival
M-Step

+

m Symmetric case: Shared cumulative hazard
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Archimedian Copula Models

m Shared frailty model induces an Archimedian
Copula

Gltok) LD R =2 H,
—~M i' (t(\ ) G(O"”“ofb\' 30-«?3: o(CHi\
H: = oC—l(M; D

o L(LMYE LMD

wav giunal s. §.



Shared frailty model vs.
Archimedian Copula models

m Frailty models is a subset of Copula models

m Copula generator does not have to be a Laplace
transform K~ ()
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m Archimedian Copula model serving clusters of any
size Is a shared frailty model



Characterization of positive
dependence

m Multivariate totally positive Copulas of order
2, MTP2 ( | Wic‘q \




Monotonic convergence of the
algorithm
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m Ilterations
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m If Archimedian Copula is MTP2, each
iteration improves the likelihood



Performance of the algorithm for
clustered survival data
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Latent progression event

m [he model

Latent event model
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Model for observed event given latent

dA, (t|To, ) = lim HLELB IR = (¢ > To)n dH (D).




he self-consistency algorithm
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