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Introducing the Spike-and-Slab LASSO

For known X, with standardized columns ||X;|[2 = n, suppose
Y:anpﬁ0+s, ENN(O,In),

where ||Bollo = q, p large, g << p. Goal is the recovery of 3.
~+ Popular Bayesian approach: Point-Mass Spike-and-Slab Prior
m(B|7) =TI [id(Bi | A) + (1 —1)do(B7)],
605 \) = %e*A‘ﬁ’|, Yirevesp| 8 iid ~ Bern(6), 6~ n(6)

» |deal posterior concentration
» MCMC posterior simulation slow for p large

~+ Popular penalized-likelihood approach: LASSO
m(B1A) =TI, ¢(Bi | A)

» Fabulously fast identification of the mode
» Problematic bias and posterior issues
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The Essence of the LASSO

3/37

Select the “best” LASSO estimator of the form

- 1 , P

B = argmax {ZIY Xp|1? - A; ﬂ,}
for an increasing sequence of A values.

Each 3 is a posterior mode under (B ) = [T, #(8i| \),
an iid prior.

As ) increases, all 3/’s are uniformly shrunk more, and larger
subsets of §;’'s are thresholded to zero.

As XA — oo, m(B| \) — do(8), a point mass at 0.

Dynamic Posterior Exploration is made practical by fast convex
optimization.



Hybrid Idea: The Spike-and-Slab LASSO Prior

A mixture of two LASSO priors with penalties A\ and \g

mssL(B]7) = H[% (Bi| A1) + (1 =208 | M)

Vs--,Yp | 0 did ~ Bern(f), 0~ m(0)
Ay small: slab distribution holds large coefficients steady
Ao large: spike distribution thresholds small coefficients
0 controls the sparsity
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The Essence of the Spike-and-Slab LASSO
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s

Select the “best” SSL (Spike-and-Slab LASSO) estimator of the
form

~

1
B —argmax {11V - X8I + log s ()}

for an increasing sequence of A\g values, with A fixed at a small
value.

Each B is a posterior mode under the wgg; (3) mixture prior.

As )\ increases, small 3/s are thresholded to zero by the “spike”
while large ones are held steady by the “slab”.

Simultaneous variable selection and (nearly) unbiased
estimation, occurring directly in the 3 space.

As )y — o0, Tss.(8B) goes to the point mass spike-and-slab prior.

Dynamic Posterior Exploration is made practical by fast
non-convex optimization.



The LASSO and the Spike-and-Slab LASSO in Action

~ Consider p =12 and n =50

~ 4 indep groups of correlated (p; = 0.9) predictors X; ~ A/(0, X)

~ Y ~ N(XBy, In), where g, = (1.3,0,0,1.3,0,0,1.3,0,0,1.3,0,0)".
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~ LASSO neveor correct. After cross validation, 4 Ufalse positives.
~ Spike-and-Slab LASSO path stabilizes at the correct model.
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What is new?

Other non-convex regularizers such as MCP and SCAD serve to
mitigate the bias of the LASSO. However, in comparison:
(1) Spike-and-Slab LASSO is a hierarchical Bayes procedure

~+ Underlying latent model indicators v = (1,...,7p)
~ () can be used to target regions of interest

(2) Spike-and-Slab LASSO penalty is non-separable

~ @ adapts to the unknown sparsity of 3,

~» Automatic hyper-parameter tuning (avoids cross-validation)
~ Automatic adjustment for multiplicity

~+ Coordinate ascent for a non-separable regularizer
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The Separable SSL Penalty
(When @ is fixed)
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Focusing First on mss (3| 0)

~ Recall the full SSL prior

o

mss(B17) = [ [1is(Bi1 M) + (1 = 71)é(Bi | Xo)]

i=1

Yy, | 0 did ~ Bern(d), 0~ w(6)
~ This prior is a mixture of Laplace priors both within and across
the coordinates of 3.

~ Such Bayesian penalty mixing yields penalization that
adaptively tailors shrinkage effects to the underlying 3,

~ To better understand this, let’s integrate out the ~;’s, and first
focus on wsg (3| ), treating 6 as if it were fixed and known.
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The Separable SSL Penalty

~+ The conditional SSL prior is an independent product

p
mwss(B10) = [J166(8i | M) + (1 = 0)6(Bi | Ao)]
i=1

$

Here, the latent +; indicators have been margined out.
~ The conditional SSL estimator is the solution to

~ 1
B —argmax {311V - X8I + log s (5 0)

§

This SSL penalty is a separable sum of component penalties

log mss.(B16) Z'09[9¢ Bil M) + (1 =0)o(Bi | Mol

i=1
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The Separable SSL Penalty

~ Each component of the SSL penalty is a smooth mix of two
LASSO:-like penalties

-p(B.6)
3
|
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The Adaptive Effect of Bayesian Penalty Mixing

Via the first order conditions for @ the derivative of the penalty

determines the amount of shrinkage,

dlog(5i|0)
91 8il

0“‘3/‘

dlog ¢(Bi | \o)

= —[ps(Bi) M+ 1 = ps(B)] o] = =A5(51)
where

0p(Bi| M)
(Bil M)+ (1 = 0)d(Bi | Ao)

is the conditional probability that 8; was drawn from ¢(5; | A1).

P (Bi) = P(vi =1 5,0) = 0%

~ A;(B;) is an adaptive convex combination of Ay and Ao.

~ A;(B;) puts more weight on the slab penalty Ay when g; is large,
and puts more weight on the spike penalty \y when 5; is small.
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SSL is a “Self-adaptive LASSO"
Letzj = Xje;where e; = Y -3, X 5k. By the first order conditions

The LASSO mode satisfies

$

~ 1 .
5= 1171~ \l:sign(z).

~ Constant penalty regardless of the size of |z - Toooo bad!

~ The Spike-and-Slab LASSO mode satisfies

) 1 *x (7 .
By = 1zl = A5(6))]+sign(Z)-

~ “Self-adaptive" property of the shrinkage term - Wonderful!

~+ Immediately suggests optimization by coordinate-wise ascent!
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Refined Characterization of the Global Mode
~ As \g — o0, the posterior becomes multimodal (non-concave), and
~ 1 ~
By = 11zl = A5(5))]+sign(z)
is not sufficient to characterize the global mode.

~ Further refinement reveals the SSL global mode Btobea
thresholding rule satisfying

5= 0 when |[z;| <A

" 3lzl = X6(B))ysign(z) when |z] > A.

where

X1-10
~4/2nlog [1+ —=—| + X
A \/nog{+/\1 6.}-1—1
~ Bis a blend of hard and soft thresholding.

~ The selection threshold A drives the minimax properties of the mode
and can be calibrated through suitable choices of (g, A1, 6).
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The Non-Separable Fully Bayes SSL Penalty
(When 6 is random)
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The Limitations of Separable Penalties

~ Separable penalties Pen(8) = 37, pen(;) are limited by their
inability to adapt to common features across the components of 3.

~ This includes the ¢y LASSO penalty, pen(5;) = —A|Sil, the o, L2,
SCAD, MCP penalties, the separable SSL penalty and many more.

~ Such separable penalties implicitly assume iid priors, namely
7(B|n) = [1r- 7(8i | n) with some (possibility multivariate)
hyperparameter 7.
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Borrowing Strength via Non-Separable Penalties

~ Moving beyond such penalties, exchangeable priors from mixing
over 7

o
~(8) = / T (5 | n)e(m)dn
i=1

yield non-separable penalties that “borrow strength” across

Bt Bp.

~ The adaptive potential of log 7(3), from such hierarchical Bayesian
penalty mixing, is reflected by the adaptive nature of its derivative

dlogn(B) _ [ dlogn(B|n)
| 8i] a|Bil

m(n|B)dn.

~ Such constructions require penalty components that correspond to
proper priors, ruling out penalties such as SCAD and MCP.

17/37



The Bayesian LASSO: An Exchangeable Attempt

~ Park and Casella (2007) propose the Bayesian LASSO

p
w(B|A) = [ ] Laplace(B;| A), A~ ()
j=1

recommending it for posterior median estimation via MCMC.

~ But from a penalized likelihood perspective, its limitations for modal
estimation are exposed.

~ Under m()), the Bayes LASSO posterior mode 3 turns out to be the
solution to

1

= —[1z] — E(\| B))sign(2).

B
~ Adaptive, but uniform shrinkage for all coordinates - Too bad!
~ E(X\| B) cannot be calibrated to obtain minimax rates - Toooo bad!

18/37



The Non-Separable Fully Bayes SSL Penalty

~ Mixing mss (3] 6) over 7(6), the components of 3 become apriori
dependent.

1p
mssu(8) = [ T[100(811 )+ (1 = )51 | 2] (o).
j=1

~ The SSL penalty log 7ss.(3) is now non-separable, and the lack of a
closed form for 7gg; (3) complicates its tractability.

~ Fortunately, a revealing and simple form can still be obtained for its
derivative.

~ Itis useful to focus on the i direction, while keeping all other
coordinates fixed at 3,;
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Further Adaptivity From Bayesian Penalty Mixing

~ The derivative of log w(3) now reveals doubly adaptive penalization
that borrows strength across coordinates

logm(B) = uip.a
a|ﬁﬁ| - A (ﬁﬁvﬂav)a

where
N (Bi By) = P*(Bi: By) M +[1 = p*(Bi: Byl Mo
and

1
P*(Bi; Byi) = /O P (B) (0] B)de.

~ By averaging over (0| 3), the shrinkage term is given an opportunity
to borrow strength and learn about the sparsity level of 3. - Hooray!

A Surprising and Useful Simplification!
p*(ﬁi; /3\/') - pg,(/jl)* 0 = E[Q | IB\i]
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Implications for the Global Mode

~ Building on the separable case, the global mode satisfies
~ 0 when |zj] < A;
Pi= {;nz,- X (B)]sign(z) when |z > A

where 0, = E[¢0| 3], and

Aj =~ \J2n|og

~ ﬂA, is now a doubly adaptive blend of soft and hard thresholding with
adaptive coordinate-specific thresholds A;.

~ When 6 ~ B(1, D p) for some D > 0,

~

14 =
M E(9]8y)

m—E(eﬁ\,)] Y

E(0] B,) ~ g a=1Bllo

~ More refined tuning of the A; for improved minimax rates becomes
available through suitable choices of (Ao, A1).
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Automatic Multiplicity Control

Assume p = 2 with 8 = (81, 82)’, and suppose 6 ~ B(1,1).

The univariate SSL penalty for 15t direction, while keeping /3. fixed:

Ao=5

-p(B.0)
3
Il

~ If fo=0—E[f| B2 = 0] = 0.34 A, goes up
~ If =4 > E[0| B2 =4]=2/3 A goes down
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The Spike-and-Slab LASSO:

Implementation
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Dynamic Posterior Exploration

LASSO:
A path-following algorithm indexed by a sequence of Laplace priors

Spike-and-Slab LASSO:
A path-following algorithm indexed by a sequence of Laplace mixtures
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EMVS

Find (7, 0) = argmaxg ) 7(3,0| Y) iteratively with an

EM algorithm by treating v as missing data

~ E-step: Let 3% and 6 be the most recent updates of (3, 6).
Forj=1,...,pcompute A} (B/(k)) where

Ao(B) = pa(B)) A+ [1 = P5(B7)] Ao
~ M-step: An adaptive LASSO regression

~(k+1) 1 > P * (k)
B =af921€%§{—2||Y—X3|| _;Ae(k)(ﬂ/ )18j]
Update the weight

k
gk+1) — pg(“(ﬁj( )) ta—1

at+b+p-2
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Refined Coordinate Ascent

Refined Coordinate Ascent:
(Mazumder et al. (2011), Breheny and Huang (2011))

Targeted towards local maxima that are global maximizers in each
direction

Beginning with 39, proceed iteratively with

a0 _ Uz > 4A) « (k- ,
Bl = ==L g -, (BYY)]sien(2)
~(k—1)
6 =E {9 By ]
where z; = Xje; for e = ¥ — 3", Xy Bk

Our non-separable penalty requires only a simple additional step!
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The Spike-and-Slab LASSO in Action

~ p=1000and n= 100
~ 50 indep groups of 20 correlated (p; = 0.9) predictors X; ~ N (0,X)

~ B, assigned g = 6 nonzero entries %(—2.5, -2,-1.5,1.5,2,2.5),
one within each of the first 6 blocks

Separable Separable (oracle) Non-separable

Ao

6 =05 6 = 6/1000 0~ B(1,p)

The non-separable SSL adapts and mimics the oracle choice!
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Comparison with the MCP Penalty

2 .
ABl- 5 if Bl <A

en, =
peor () {;7% it 18] > A

MCP (best-subset) MCP (best gamma) MCP (~LASSO)

Hard Tresholding Best Cross-validated Towards the LASSO
7%1 7:4185 7:85

As opposed to the Spike-and-Slab LASSO:
Cross-validation needed over a two-dimensional grid of values (), )
The regularization path does not stabilize.
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A Simulation Comparison with Competing Methods

Correlated Block Design
A ¢ "MSE FDR FNR g TRUE TIME HAM
SSL 1 s 321 0253 0253 6 21 034 3.04
SSL 0.1 B(1,p) 332 0.255 0257 599 23 0.69  3.07
SSL 1 B(1,p) 333 026 026 6 22 048  3.12

Horseshoe 3.19 0.246 0.417 4.64 1 465.84 3.64
EMVS 589 0.074 0.688 2.02 0 0.78 4.28
MCP* 6.77 0.563 0.483 7.09 1 2.04 6.89

Adaptive-LASSO  2.79 0.549 0.192 10.75 2 5.37 7.05
SSL 1 05 598 0.574 0.31 9.71 2 0.33 7.43
SCAD* 839 077 057 112 0 0.52 12.04
LASSO 347 0.845 0.113 34.35 0 0.74 29.71

Table: Simulation study using 100 repetitions; MSE (average mean squared error),
FDR (false discovery rate), FNR (false non-discovery rate), DIM (average size of the
model), TRUE (# true model detected), TIME (average execution time in seconds),
HAM (average Hamming distance); Methods have been sorted based on the Hamming
distance. (x: ncvreg implementation using cross-validation over a one-dimensional
grid with a default value of the second tuning parameter).
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Fast Bayesian Factor Analysis With
The Spike-and-Slab LASSO
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An SSL Application to Bayesian Factor Analysis

Generic factor model for fixed number K of latent factors:
Yi|wi, B, ¥ Ng(Bwi,X), wi~Nk(0,lk) 1<i<n,

| I +l
G K G

~ E=[er, ... €0 with € % Ng(0,X), T = diag{c?} ¢,
~ Q= [wy,...,wy]’: latent factors
~ B = (b)f~, : factor loadings

31/37



An SSL Application to Bayesian Factor Analysis

Integrating out w; ~ Nk(0, Ix) yields
fly;| B,£) =Ng(0,BB' +X),1<i<n.

~ Because BB’ = (BP)(BP)’, for any orthogonal matrix P, the
likelihood is invariant under factor rotation.

~ Components of B are unidentifiable.

~ Effective factor cardinality K is unknown.
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The Prior and Algorithm Underlying Our Approach
An SSL-IBP prior on infinite-dimensional B = {Bjk}ﬁfo which
anchors on sparsity inducing factor orientations.

~ A Spike-and-Slab LASSO (SSL) prior
T(Bikl i) ~ Yk (Bix| A1) + (1 = %) (Bjx | Ao),

controlled by an Indian Buffet Process (IBP) on 0-1 ’y]{ks

k
Yk ~ Bern[f], Ok = HV/, v i B(a, 1).
1=1

~ Set A\ << Ao to adaptively threshold smaller Sj.
~ Prespecification of K and identifiability constraints are avoided.

~ Implementation with a parameter expanded likelihood EM algorithm
yields automatic rotations which converge rapidly to excellent sparse
modal estimates.
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The SSL-IBP Prior with Automatic Rotations

A challenging problem with n =100, G = 2000, K = 5:

Bue
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The SSL-IBP Prior with Automatic Rotations

A challenging problem with n =100, G = 2000, K = 5:
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The SSL-IBP Prior with Automatic Rotations
A challenging problem with n =100, G = 2000, K = 5:

Buue SPCA Varimax AFTER SPCA
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The SSL-IBP Prior with Automatic Rotations
A challenging problem with n =100, G = 2000, K = 5:

Buue SPCA Varimax AFTER SPCA
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Some Final Remarks

~ Implementation of the Spike-and-Slab LASSO with the C-written R
package SSLASSO, is available on CRAN.

~ By suitable tuning of A, the LASSO mode can achieve the near
minimax rate of convergence. However, the concentration of the full
posterior of the LASSO is a disaster. For the minimax choice of ), it
puts essentially no mass on balls around 5y with a radius of a
substantially larger order than the minimax rate. (Castilio et al. (2015)) .

~ By suitable tuning of A;’s, both the global mode and the posterior
concentration of the Spike-and-Slab LASSO can achieve the
near-minimax rate of convergence. Unlike the LASSO, the
Spike-and-Slab LASSO posterior keeps pace with the global mode!

~ The SSL prior can be incorporated naturally into general Bayesian
methodology. For example, R&G (2016) used an SSL prior coupled
with an Indian Buffet Process = (-y) for fast Bayesian Factor Analysis.
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Thank you!
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