Bayesian Penalty Mixing with the Spike-and-Slab LASSO

Veronika Ročková¹ and Ed George²

Symposium on Data Science and Statistics in Honor of Edward J. Wegman Reston, Virginia May 18, 2018

¹Chicago Booth

²Wharton, UPenn

Introducing the Spike-and-Slab LASSO

For known $\boldsymbol{X}_{n \times p}$ with standardized columns $||\boldsymbol{X}_j||^2 = n$, suppose

$$\mathbf{Y} = \mathbf{X}_{n \times p} \boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \mathbf{I}_n),$$

where $||\beta_0||_0 = q$, p large, $q \ll p$. Goal is the recovery of β_0 .

→ Popular Bayesian approach: Point-Mass Spike-and-Slab Prior

$$\pi(\beta \mid \gamma) = \prod_{i=1}^{p} [\gamma_i \phi(\beta_i \mid \lambda) + (1 - \gamma_i) \delta_0(\beta_i)],$$

$$\phi(eta_i \mid \lambda) \equiv rac{\lambda}{2} e^{-\lambda |eta_i|}, \qquad \gamma_1, \ldots, \gamma_p \mid \theta \; extit{iid} \sim exttt{Bern}(heta), \quad heta \sim \pi(heta)$$

- ► Ideal posterior concentration
- ► MCMC posterior simulation slow for *p* large
- → Popular penalized-likelihood approach: LASSO

$$\pi(\beta \mid \lambda) = \prod_{i=1}^{p} \phi(\beta_i \mid \lambda)$$

- Fabulously fast identification of the mode
- Problematic bias and posterior issues

The Essence of the LASSO

-- Select the "best" LASSO estimator of the form

$$\widehat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ -\frac{1}{2} || \boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} ||^2 - \lambda \sum_{i=1}^p |\beta_i| \right\}$$

for an increasing sequence of λ values.

- \rightarrow Each $\widehat{\beta}$ is a posterior mode under $\pi(\beta \mid \lambda) = \prod_{i=1}^{p} \phi(\beta_i \mid \lambda)$, an iid prior.
- As λ increases, all $\hat{\beta}_i$'s are uniformly shrunk more, and larger subsets of $\hat{\beta}_i$'s are thresholded to zero.
- \rightarrow As $\lambda \to \infty$, $\pi(\beta \mid \lambda) \to \delta_0(\beta)$, a point mass at **0**.
- Dynamic Posterior Exploration is made practical by fast convex optimization.

Hybrid Idea: The Spike-and-Slab LASSO Prior

A mixture of two LASSO priors with penalties λ_1 and λ_0

$$\pi_{SSL}(\beta \mid \gamma) = \prod_{i=1}^{p} [\gamma_i \phi(\beta_i \mid \lambda_1) + (1 - \gamma_i) \phi(\beta_i \mid \lambda_0)]$$
$$\gamma_1, \dots, \gamma_p \mid \theta \quad \textit{iid} \sim \text{Bern}(\theta), \quad \theta \sim \pi(\theta)$$

- λ_1 small: slab distribution holds large coefficients steady
- λ_0 large: spike distribution thresholds small coefficients
 - θ controls the sparsity

The Essence of the Spike-and-Slab LASSO

Select the "best" SSL (Spike-and-Slab LASSO) estimator of the form

$$\widehat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ -\frac{1}{2} || \boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}||^2 + \log \pi_{SSL}(\boldsymbol{\beta}) \right\}$$

for an increasing sequence of λ_0 values, with λ_1 fixed at a small value.

- \rightarrow Each $\hat{\beta}$ is a posterior mode under the $\pi_{SSL}(\beta)$ mixture prior.
- As λ_0 increases, small $\hat{\beta}_i$'s are thresholded to zero by the "spike" while large ones are held steady by the "slab".
- Simultaneous *variable selection* and (nearly) *unbiased estimation*, occurring directly in the β space.
- \rightarrow As $\lambda_0 \rightarrow \infty$, $\pi_{SSL}(\beta)$ goes to the point mass spike-and-slab prior.
- Dynamic Posterior Exploration is made practical by fast non-convex optimization.

The LASSO and the Spike-and-Slab LASSO in Action

- \rightarrow Consider p = 12 and n = 50
- \rightsquigarrow 4 indep groups of correlated ($\rho_{ij} = 0.9$) predictors $\boldsymbol{X}_i \sim \mathcal{N}(\boldsymbol{0}, \Sigma)$
- $ightharpoonup m{Y} \sim \mathcal{N}(m{X}eta_0, I_n), \text{ where } \beta_0 = (1.3, 0, 0, 1.3, 0, 0, 1.3, 0, 0, 1.3, 0, 0)'.$

- → LASSO never correct. After cross validation, 4 false positives.
- → Spike-and-Slab LASSO path stabilizes at the correct model.

What is new?

Other non-convex regularizers such as MCP and SCAD serve to mitigate the bias of the LASSO. However, in comparison:

- (1) Spike-and-Slab LASSO is a hierarchical Bayes procedure
 - \rightsquigarrow Underlying latent model indicators $\gamma = (\gamma_1, \dots, \gamma_p)$
 - $ightarrow \pi(\gamma)$ can be used to target regions of interest
- (2) Spike-and-Slab LASSO penalty is non-separable
 - $\rightarrow \theta$ adapts to the unknown sparsity of β_0
 - Automatic hyper-parameter tuning (avoids cross-validation)
 - Automatic adjustment for multiplicity
 - → Coordinate ascent for a non-separable regularizer

The Separable SSL Penalty (When θ is fixed)

Focusing First on $\pi_{SSL}(\beta \mid \theta)$

→ Recall the full SSL prior

$$\pi_{SSL}(\boldsymbol{\beta} \mid \boldsymbol{\gamma}) = \prod_{i=1}^{p} [\gamma_{i} \phi(\beta_{i} \mid \lambda_{1}) + (1 - \gamma_{i}) \phi(\beta_{i} \mid \lambda_{0})]$$
$$\gamma_{1}, \dots, \gamma_{p} \mid \theta \quad \textit{iid} \sim \text{Bern}(\boldsymbol{\theta}), \quad \boldsymbol{\theta} \sim \pi(\boldsymbol{\theta})$$

- This prior is a mixture of Laplace priors both within and across the coordinates of β .
- Such Bayesian penalty mixing yields penalization that adaptively tailors shrinkage effects to the underlying β_0
- To better understand this, let's integrate out the γ_i 's, and first focus on $\pi_{SSL}(\beta \mid \theta)$, treating θ as if it were fixed and known.

The Separable SSL Penalty

→ The conditional SSL prior is an independent product

$$\pi_{\mathit{SSL}}(oldsymbol{eta} \,|\, heta) = \prod_{i=1}^p [heta\phi(eta_i \,|\, \lambda_1) + (1- heta)\phi(eta_i \,|\, \lambda_0)]$$

- \rightarrow Here, the latent γ_i indicators have been margined out.
- The conditional SSL estimator is the solution to

$$\widehat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ -\frac{1}{2} ||\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}||^2 + \log \pi_{SSL}(\boldsymbol{\beta} \,|\, \boldsymbol{\theta}) \right\}$$

This SSL penalty is a **separable** sum of component penalties

$$\log \pi_{SSL}(\beta \mid \theta) = \sum_{i=1}^{p} \log[\theta \phi(\beta_i \mid \lambda_1) + (1-\theta)\phi(\beta_i \mid \lambda_0)]$$

The Separable SSL Penalty

Each component of the *SSL* penalty is a smooth mix of two LASSO-like penalties

The Adaptive Effect of Bayesian Penalty Mixing

Via the first order conditions for $\widehat{\beta}$, the derivative of the penalty determines the amount of shrinkage,

$$\frac{\partial \log \pi(\beta_i \mid \theta)}{\partial |\beta_i|} = \rho_{\theta}^{\star}(\beta_i) \frac{\partial \log \phi(\beta_i \mid \lambda_1)}{\partial |\beta_i|} + [1 - \rho_{\theta}^{\star}(\beta_i)] \frac{\partial \log \phi(\beta_i \mid \lambda_0)}{\partial |\beta_i|}$$

$$= -[\rho_{\theta}^{\star}(\beta_i) \lambda_1 + [1 - \rho_{\theta}^{\star}(\beta_i)] \lambda_0] \equiv -\lambda_{\theta}^{\star}(\beta_i)$$

where

$$p_{\theta}^{\star}(\beta_{i}) = P(\gamma_{i} = 1 \mid \beta_{i}, \theta) = \frac{\theta \phi(\beta_{i} \mid \lambda_{1})}{\theta \phi(\beta_{i} \mid \lambda_{1}) + (1 - \theta)\phi(\beta_{i} \mid \lambda_{0})}$$

is the conditional probability that β_i was drawn from $\phi(\beta_i | \lambda_1)$.

- $\rightarrow \lambda_{\theta}^{\star}(\beta_i)$ is an adaptive convex combination of λ_1 and λ_0 .
- $\lambda_{\theta}^{\star}(\beta_i)$ puts more weight on the slab penalty λ_1 when β_i is large, and puts more weight on the spike penalty λ_0 when β_i is small.

SSL is a "Self-adaptive LASSO"

Let $z_j = \pmb{X}_j' \pmb{e}_j$ where $\pmb{e}_j = \pmb{Y} - \sum_{k \neq j} \pmb{X}_k \widehat{\beta}_k$. By the first order conditions

The LASSO mode satisfies

$$\widehat{\beta}_j = \frac{1}{n}[|z_j| - \lambda] + \operatorname{sign}(z_j).$$

- \rightarrow Constant penalty regardless of the size of $|z_j|$ Toooo bad!
- → The Spike-and-Slab LASSO mode satisfies

$$\widehat{\beta}_j = \frac{1}{n} [|z_j| - \lambda_{\theta}^{\star}(\widehat{\beta}_j)]_+ \operatorname{sign}(z_j).$$

- → "Self-adaptive" property of the shrinkage term Wonderful!
- Immediately suggests optimization by coordinate-wise ascent!

Refined Characterization of the Global Mode

ightarrow As $\lambda_0
ightarrow \infty$, the posterior becomes multimodal (non-concave), and

$$\widehat{\beta}_j = \frac{1}{n}[|z_j| - \lambda_{\theta}^{\star}(\widehat{\beta}_j)]_+ \operatorname{sign}(z_j)$$

is not sufficient to characterize the global mode.

 \leadsto Further refinement reveals the SSL global mode $\widehat{\boldsymbol{\beta}}$ to be a thresholding rule satisfying

$$\widehat{\beta}_j = \begin{cases} 0 & \text{when} \quad |z_j| \le \Delta \\ \frac{1}{n}[|z_j| - \lambda_{\theta}^{\star}(\widehat{\beta}_j)]_{+} \text{sign}(z_j) & \text{when} \quad |z_j| > \Delta. \end{cases}$$

where

$$\Delta \approx \sqrt{2n log \left[1 + \frac{\lambda_0}{\lambda_1} \frac{1 - \theta}{\theta}\right]} + \lambda_1$$

- $\rightarrow \hat{\beta}$ is a blend of hard and soft thresholding.
- The selection threshold Δ drives the minimax properties of the mode and can be calibrated through suitable choices of $(\lambda_0, \lambda_1, \theta)$.

The Non-Separable Fully Bayes SSL Penalty (When θ is random)

The Limitations of Separable Penalties

- Separable penalties $Pen(\beta) = \sum_{i=1}^{p} pen(\beta_i)$ are limited by their inability to adapt to common features across the components of β .
- This includes the ℓ_1 LASSO penalty, $pen(\beta_i) = -\lambda |\beta_i|$, the ℓ_0 , ℓ_2 , SCAD, MCP penalties, the separable *SSL* penalty and many more.
- Such separable penalties implicitly assume iid priors, namely $\pi(\beta \mid \eta) = \prod_{i=1}^p \pi(\beta_i \mid \eta)$ with some (possibility multivariate) hyperparameter η .

Borrowing Strength via Non-Separable Penalties

Moving beyond such penalties, exchangeable priors from mixing over η

$$\pi(\boldsymbol{\beta}) = \int \prod_{i=1}^{p} \pi(\beta_i \mid \eta) \pi(\eta) d\eta$$

yield **non-separable penalties** that "borrow strength" across β_1, \ldots, β_p .

The adaptive potential of $\log \pi(\beta)$, from such hierarchical Bayesian penalty mixing, is reflected by the adaptive nature of its derivative

$$\frac{\partial \log \pi(\boldsymbol{\beta})}{\partial |\beta_i|} = \int \frac{\partial \log \pi(\boldsymbol{\beta} \mid \boldsymbol{\eta})}{\partial |\beta_i|} \pi(\boldsymbol{\eta} \mid \boldsymbol{\beta}) \mathrm{d}\, \boldsymbol{\eta}.$$

Such constructions require penalty components that correspond to proper priors, ruling out penalties such as SCAD and MCP.

The Bayesian LASSO: An Exchangeable Attempt

→ Park and Casella (2007) propose the Bayesian LASSO

$$\pi(\beta \mid \lambda) = \prod_{j=1}^{p} Laplace(\beta_j \mid \lambda), \quad \lambda \sim \pi(\lambda)$$

recommending it for posterior median estimation via MCMC.

- But from a penalized likelihood perspective, its limitations for modal estimation are exposed.
- \neg Under $\pi(\lambda)$, the Bayes LASSO posterior mode $\widehat{\beta}$ turns out to be the solution to

$$\widehat{\beta}_j = \frac{1}{n}[|z_j| - \mathsf{E}(\lambda \,|\, \widehat{\boldsymbol{\beta}})]_+ \mathrm{sign}(z_j).$$

- -- Adaptive, but uniform shrinkage for all coordinates Too bad!
- \rightarrow E($\lambda \mid \widehat{\beta}$) cannot be calibrated to obtain minimax rates Toooo bad!

The Non-Separable Fully Bayes SSL Penalty

Mixing $\pi_{SSL}(\beta \mid \theta)$ over $\pi(\theta)$, the components of β become apriori dependent.

$$\pi_{\mathit{SSL}}(oldsymbol{eta}) = \int_0^1 \prod_{i=1}^p \left[heta \phi(eta_i \,|\, \lambda_1) + (1- heta) \phi(eta_i \,|\, \lambda_0)
ight] \mathrm{d}\, \pi(oldsymbol{ heta}).$$

- The SSL penalty $\log \pi_{SSL}(\beta)$ is now **non-separable**, and the lack of a closed form for $\pi_{SSL}(\beta)$ complicates its tractability.
- Fortunately, a revealing and simple form can still be obtained for its derivative.
- It is useful to focus on the i^{th} direction, while keeping all other coordinates fixed at β_{Vi}

Further Adaptivity From Bayesian Penalty Mixing

The derivative of $\log \pi(\beta)$ now reveals doubly adaptive penalization that borrows strength across coordinates

$$\frac{\partial \log \pi(\boldsymbol{\beta})}{\partial |\beta_i|} = -\lambda^{\star}(\beta_i; \boldsymbol{\beta}_{\setminus i}),$$

where

$$\lambda^{\star}(\beta_i; \boldsymbol{\beta}_{\setminus i}) = \boldsymbol{p}^{\star}(\beta_i; \boldsymbol{\beta}_{\setminus i}) \, \lambda_1 + [1 - \boldsymbol{p}^{\star}(\beta_i; \boldsymbol{\beta}_{\setminus i})] \, \lambda_0$$

and

$$p^{\star}(eta_i;oldsymbol{eta}_{\setminus i}) \equiv \int_0^1 p_{ heta}^{\star}(eta_i) \pi(heta \mid oldsymbol{eta}) \mathrm{d}\, heta.$$

 $\neg \neg$ By averaging over $\pi(\theta \mid \beta)$, the shrinkage term is given an opportunity to **borrow strength** and learn about the sparsity level of β . - Hooray!

A Surprising and Useful Simplification!

$$p^{\star}(\beta_i; \boldsymbol{\beta}_{\setminus i}) = p_{\theta_i}^{\star}(\beta_i), \quad \theta_i = \mathsf{E}[\theta \mid \boldsymbol{\beta}_{\setminus i}]$$

Implications for the Global Mode

Building on the separable case, the global mode satisfies

$$\widehat{\beta}_i = \begin{cases} 0 & \text{when} & |z_i| \leq \Delta_i \\ \frac{1}{n}[|z_i| - \lambda_{\widehat{\theta}_i}^{\star}(\widehat{\beta}_i)]_{+} \text{sign}(z_i) & \text{when} & |z_i| > \Delta_i. \end{cases}$$

where $\widehat{\theta}_i = \mathsf{E}[\theta \,|\, \widehat{\boldsymbol{\beta}}_{\lor i}]$, and

$$\Delta_i \approx \sqrt{2 n \log \left[1 + \frac{\lambda_0}{\lambda_1} \frac{1 - \mathsf{E}(\theta \mid \widehat{\boldsymbol{\beta}}_{\setminus i})}{\mathsf{E}(\theta \mid \widehat{\boldsymbol{\beta}}_{\setminus i})}\right] + \lambda_1}.$$

- \rightarrow $\hat{\beta}_i$ is now a doubly adaptive blend of soft and hard thresholding with adaptive coordinate-specific thresholds Δ_i .
- \rightarrow When $\theta \sim \mathcal{B}(1, Dp)$ for some D > 0,

$$\mathsf{E}(\theta \,|\, \widehat{oldsymbol{eta}}_{\lor i}) \sim rac{\widehat{oldsymbol{q}}}{oldsymbol{p}}, \qquad \widehat{oldsymbol{q}} = \|\widehat{oldsymbol{eta}}\|_{0}$$

More refined tuning of the Δ_i for improved minimax rates becomes available through suitable choices of (λ_0, λ_1) .

Automatic Multiplicity Control

Assume p = 2 with $\beta = (\beta_1, \beta_2)'$, and suppose $\theta \sim \mathcal{B}(1, 1)$.

The univariate SSL penalty for 1st direction, while **keeping** β_2 **fixed**:

$$\rightarrow$$
 If $\beta_2 = 0 \rightarrow \mathsf{E}[\theta \mid \beta_2 = 0] = 0.34 \ \Delta_i$ goes up \rightarrow If $\beta_2 = 4 \rightarrow \mathsf{E}[\theta \mid \beta_2 = 4] = 2/3 \ \Delta_i$ goes down

The Spike-and-Slab LASSO: Implementation

Dynamic Posterior Exploration

LASSO:

A path-following algorithm indexed by a sequence of Laplace priors

Spike-and-Slab LASSO:

A path-following algorithm indexed by a sequence of Laplace mixtures

$$\lambda_0 = 2$$

EMVS

Find $(\widehat{\gamma}, \widehat{\theta}) = \arg\max_{(\beta, \theta)} \pi(\beta, \theta \mid \mathbf{Y})$ iteratively with an EM algorithm by treating γ as missing data

For $j=1,\ldots,p$ compute $\lambda_{\theta^{(k)}}^{\star}(\beta_j^{(k)})$ where

$$\lambda_{\theta}^{\star}(\beta_j) = p_{\theta}^{\star}(\beta_j) \lambda_1 + [1 - p_{\theta}^{\star}(\beta_j)] \lambda_0$$

→ M-step: An adaptive LASSO regression

$$\widehat{\boldsymbol{\beta}}^{(k+1)} = \arg\max_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ -\frac{1}{2} ||\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}||^2 - \sum_{j=1}^p \lambda_{\theta^{(k)}}^{\star}(\beta_j^{(k)})|\beta_j| \right\}$$

Update the weight

$$\theta^{(k+1)} = \frac{p_{\theta^{(k)}}^*(\beta_j^{(k)}) + a - 1}{a + b + p - 2}$$

Refined Coordinate Ascent

Refined Coordinate Ascent:

(Mazumder et al. (2011), Breheny and Huang (2011))

Targeted towards local maxima that are global maximizers in each direction

Beginning with $\beta^{(0)}$, proceed iteratively with

$$\widehat{\beta}_{j}^{(k)} = \frac{\mathbb{I}(|z_{j}| > \Delta_{j})}{n} \left[|z_{j}| - \lambda_{\theta_{j}}^{\star} \left(\widehat{\beta}_{j}^{(k-1)} \right) \right]_{+} \operatorname{sign}(z_{j})$$

$$\theta_{j} = \mathsf{E} \left[\theta \, \middle| \, \widehat{\beta}_{\backslash j}^{(k-1)} \right]$$

where
$$z_j = \mathbf{X}_j' \mathbf{e}_j$$
 for $\mathbf{e}_j = \mathbf{Y} - \sum_{k \neq j} \mathbf{X}_k \widehat{\beta}_k$.

Our non-separable penalty requires only a simple additional step!

The Spike-and-Slab LASSO in Action

- \rightarrow *p* = 1000 and *n* = 100
- \leadsto 50 indep groups of 20 correlated ($\rho_{ij}=0.9$) predictors $\pmb{X}_i \sim \mathcal{N}(\pmb{0}, \Sigma)$
- β_0 assigned q=6 nonzero entries $\frac{1}{\sqrt{3}}(-2.5, -2, -1.5, 1.5, 2, 2.5)$, one within each of the first 6 blocks

The non-separable SSL adapts and mimics the oracle choice!

Comparison with the MCP Penalty

$$pen_{MCP}(\beta) = \begin{cases} \lambda |\beta| - \frac{\beta^2}{2\gamma} & \text{if} \quad |\beta| \leq \gamma \lambda \\ \frac{1}{2}\gamma\lambda^2 & \text{if} \quad |\beta| > \gamma \lambda \end{cases}$$

$$MCP \text{ (best-subset)} \qquad MCP \text{ (best gamma)} \qquad MCP \text{ (-LASSO)}$$

$$\gamma \approx 1 \qquad Best Cross-validated \qquad Towards the LASSO$$

$$\gamma = 4.185 \qquad \gamma = 8.5$$

As opposed to the Spike-and-Slab LASSO:

Cross-validation needed over a two-dimensional grid of values (λ, γ) The regularization path does not stabilize.

A Simulation Comparison with Competing Methods

			Correlated Block Design						
	λ_1	θ	MSE	FDR	FNR	ĝ	TRUE	TIME	HAM
SSL	1	6 1000	3.21	0.253	0.253	6	21	0.34	3.04
SSL	0.1	$\mathcal{B}(1,p)$	3.32	0.255	0.257	5.99	23	0.69	3.07
SSL	1	$\mathcal{B}(1,p)$	3.33	0.26	0.26	6	22	0.48	3.12
Horseshoe			3.19	0.246	0.417	4.64	1	465.84	3.64
EMVS			5.89	0.074	0.688	2.02	0	0.78	4.28
MCP*			6.77	0.563	0.483	7.09	1	2.04	6.89
Adaptive-LASSO			2.79	0.549	0.192	10.75	2	5.37	7.05
SSL	1	0.5	5.98	0.574	0.31	9.71	2	0.33	7.43
SCAD*			8.39	0.77	0.57	11.2	0	0.52	12.04
LASSO			3.47	0.845	0.113	34.35	0	0.74	29.71

Table: Simulation study using 100 repetitions; MSE (average mean squared error), FDR (false discovery rate), FNR (false non-discovery rate), DIM (average size of the model), TRUE (# true model detected), TIME (average execution time in seconds), HAM (average Hamming distance); Methods have been sorted based on the Hamming distance. (*: ncvreg implementation using cross-validation over a one-dimensional grid with a default value of the second tuning parameter).

Fast Bayesian Factor Analysis With The Spike-and-Slab LASSO

An SSL Application to Bayesian Factor Analysis

Generic factor model for **fixed number** K of latent factors:

$$m{Y}_i \mid m{\omega}_i, m{B}, \Sigma \stackrel{ ext{ind}}{\sim} \mathcal{N}_G \left(m{B} m{\omega}_i, \Sigma
ight), \quad m{\omega}_i \sim \mathcal{N}_K (m{0}, m{I}_K) \quad 1 \leq i \leq n,$$

$$ightharpoonup m{E} = [\epsilon_1, \dots, \epsilon_n]' \text{ with } \epsilon_i \stackrel{\text{ind}}{\sim} \mathcal{N}_G(\mathbf{0}, \Sigma), \ \Sigma = \text{diag}\{\sigma_j^2\}_{j=1}^G$$

$$\rightsquigarrow \Omega = [\omega_1, \dots, \omega_n]'$$
: latent factors

$$\rightarrow$$
 $\mathbf{B} = (b_{ik})_{i,k=1}^{G,K}$: factor loadings

An SSL Application to Bayesian Factor Analysis

Integrating out $\omega_i \sim \mathcal{N}_K(\mathbf{0}, I_K)$ yields

$$f(\mathbf{y}_i \mid \mathbf{B}, \mathbf{\Sigma}) = \mathcal{N}_G(\mathbf{0}, \mathbf{B}\mathbf{B}' + \mathbf{\Sigma}), \ 1 \leq i \leq n.$$

- Because BB' = (BP)(BP)', for any orthogonal matrix P, the likelihood is invariant under factor rotation.
- → Components of B are unidentifiable.
- \rightarrow Effective factor cardinality K is unknown.

The Prior and Algorithm Underlying Our Approach

An SSL-IBP prior on infinite-dimensional $\mathbf{B} = \{\beta_{jk}\}_{j,k}^{G,\infty}$ which anchors on sparsity inducing factor orientations.

→ A Spike-and-Slab LASSO (SSL) prior

$$\pi(\beta_{jk}|\gamma_{jk}) \sim \gamma_{jk}\phi(\beta_{jk}|\lambda_1) + (1-\gamma_{jk})\phi(\beta_{jk}|\lambda_0),$$

controlled by an **Indian Buffet Process (IBP)** on 0-1 $\gamma'_{ik}s$

$$\gamma_{jk} \sim \text{Bern}[\theta_{(k)}], \quad \theta_{(k)} = \prod_{l=1}^k \nu_l, \quad \nu_l \stackrel{\text{iid}}{\sim} \mathcal{B}(\alpha, 1).$$

- \rightarrow Set $\lambda_1 << \lambda_0$ to adaptively threshold smaller β_{ik} .
- Prespecification of *K* and identifiability constraints are avoided.
- Implementation with a parameter expanded likelihood EM algorithm yields automatic rotations which converge rapidly to excellent sparse modal estimates.

Some Final Remarks

- Implementation of the Spike-and-Slab LASSO with the C-written R package SSLASSO, is available on CRAN.
- \rightarrow By suitable tuning of Δ_i 's, both the global mode and the posterior concentration of the Spike-and-Slab LASSO can achieve the near-minimax rate of convergence. Unlike the LASSO, the Spike-and-Slab LASSO posterior keeps pace with the global mode!
- The SSL prior can be incorporated naturally into general Bayesian methodology. For example, R&G (2016) used an SSL prior coupled with an Indian Buffet Process $\pi(\gamma)$ for fast Bayesian Factor Analysis.

Thank you!

Some References

Ročková, V. and George E. (2016+). The Spike-and-Slab LASSO, *Journal of the American Statistical Association*, (in press).

Ročková, V. (2018), Bayesian Estimation of Sparse Signals with a Continuous Spike-and-Slab Prior, *The Annals of Statistics*, 46:401–437).

Ročková, V. and George, E. (2016), Bayesian Penalty Mixing: The Case of a Non-separable Penalty, *Statistical Analysis for High-Dimensional Data, Abel Symposia 11*.

Ročková, V. and George E. (2016), Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity, *Journal of the American Statistical Association*, 111:1608-1622.

Ročková, V. and George, E. (2014), EMVS: The EM Approach to Bayesian Variable Selection, *Journal of the American Statistical Association*,109:828-846.