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 Motivation
Heterogeneous data and complex analytics results make it cognitive challenging for

manufacturing users (e.g., engineers and operators) to obtain information and insights in

collaboration with manufacturing data analytics.

 Objective

To bridge the gap between the high demand of new data visualization tools and the low efficiency

of user-centered evaluating processes.

Motivation and Objective
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Challenges and Approach
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 Formats of Information Visualization

 Static visualizations (DeLamarter, 1986; Rohrer et al., 1997)

 Interactive designs to visualize high dimensional, large-sample and dynamic data sets
(Wegman, 1990; Carlis and Konstan, 1998; Van Ham et al., 2004; Wills, 1997)

 Virtual reality to immerse the users in the virtual world of data visualization (Bryson, 1996)

 Augmented reality to mix up the real world and visualization graphics (Azuma, 1997)

 Application of VR and AR-based visualization

 Medical science (Bichlmeier et al., 2007; Hansen et al., 2010)

 Education (Billinghurst, 2002; Kaufmann, 2003)

 Industry (Doil et al., 2003; Nee et al., 2012)

 Smart manufacturing data analytics (Chen et al., 2016)

Related Works (Information Visualization)
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Related Works (Visualization Evaluation)
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 Qualitative Evaluation

 Field observation (Isenberg et al., 2008) and laboratory observation (Hilbert et al., 2000);

 Heuristic evaluation, formative usability test and summative evaluation (Hix et al., 1999);

 Longitudinal study for entire visualization and analysis process (Saraiya et al., 2006);

 Pluralistic walkthrough (Bias, 1994) and cognitive walkthrough (Rieman et al., 1995);

 Limitations: Lacking unobtrusive data collection during users’ interaction with visualizations; 
lacking online visualization evaluation in a timely manner.

 Quantitative Evaluation

 Controlled experiment (e.g., randomized experiments, A/B testing, treatment testing) (Willett 
et al., 2007; Cohavi et al., 2009);

 Performance models (e.g., GMOS, Fitt’s Law) (Bowman et al., 2002);

 Automated usability evaluation to use software facilities to record relevant information about 
the user and the system (Lvory et al., 2001);

 Limitations: Lacking subjective measures to indicate users’ perception, cognition, and 
preferences.
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Three Visualization Designs for Evaluation
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Static Tree 

Diagram

Collapsible 

Tree Diagram
Zoomable

Nested Circles

Static Node-link Tree Diagram: full

names and hierarchical relationships

were mapped to the circles, texts and

edges, respectively.

Collapsible Node-link Tree Diagram:

after a click on the node, the

corresponding branch can be expanded

or collapsed, which provides users with

filtered information.

Zoomable Nested Circles: The nodes

are mapped to circles. Hierarchical

levels are represented by different level

of packs and interactive field of views.

By clicking on an interested circle, the

circle will be zoomed in/out with more

details on children circles inside it.

Open source library D3.js is used for creating three visualization designs. Codes are in HTML and javascript and are deployed on web browser.

Data set to be visualized: hierarchical data of human resources in three companies



Pre-defined Tasks
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Task 1 Free Exploration Explore the visualization design in three minutes.

Task 2

Predefined 

Tasks

Type 

1

Find a given name* in level 1**.

Task 3 Find a given name in level 1.

Task 4 Find a given name in level 2.

Task 5 Find a given name in level 2.

Task 6 Find a given name in level 3.

Task 7 Find a given name in level 3.

Task 8 Type 

2

Find a given name in level 2 and click on the direct parent***.

Task 9 Find a given name in level 3 and click on the direct parent.

Task 10
Type 

3

Count the total number children of two given names in level 1.

Task 11 Count the total number children of two given names in level 2.

Task 12 Count the total number children of two given names in level 3.
* Every given name differs from each other.
** Level is defined by the distance between the node and the root in a hierarchical data set.
*** Direct parent node is defined as the directly linked nodes in higher level.
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Data Collection and Feature Extraction
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EEG Device Eye Tracker Logging System
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* 10 EEG channels include Electrocardiography (ECG), Fz, F3, F4, Cz, C3, C4, POz, P3, P4.
** Mouse events include scrolls, clicks, move overs and move outs of primitives.

Data EEG Signals* Eye Movements Logs

Features
Stat. features 

(6)**

Morpho-

logical

Features (2)

Time-freq. 

features (1)

AOIs 

related 

features (2)

Distance 

related 

features (2)

AOIs 

related 

features (2)

Distance 

related 

features (2)

Task 

features 

(2)

Number 450 4 6

* Features of EEG signals were extracted from Delta, Theta, Alpha, Beta, and Gamma bands (5 bands) of ECG, Fz, F3, F4, Cz,

C3, C4, POz, P3, P4 channels (10 channels), respectively. Hence in total 10 channels × 5 bands × (6 statistical features + 2

morphological features + 1 time-frequency features) = 450 features were extracted from EEG signals.
** Number in the bracket presents the count of features in corresponding group.

Mean value, standard deviation, 

energy, entropy, kurtosis, and 

skewness of 𝑠𝑠𝑐𝑎𝑙𝑒𝑑

iFFT (Doyle et al., 1974) to obtain five 

bands in time domain (𝑠𝑟𝑎𝑤);

Personalized feature standardization 

(Wang et al., 2016) 𝑠𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑠𝑟𝑎𝑤−𝐵𝑙

𝐵𝑢−𝐵𝑙
.

Line length: 𝐿 = σ𝑘=2
𝑁 𝑠𝑠𝑐𝑎𝑙𝑒𝑑 𝑘 − 1 − 𝑠𝑠𝑐𝑎𝑙𝑒𝑑 𝑘 ,

Mean of nonlinear energy operator: 
1

𝑁−2
σ𝑘=2
𝑁−1 𝑠𝑠𝑐𝑎𝑙𝑒𝑑 𝑘 2 − 𝑠𝑠𝑐𝑎𝑙𝑒𝑑 𝑘 − 1 ∙ 𝑠𝑠𝑐𝑎𝑙𝑒𝑑 𝑘 + 1 .Wavelet energy

Mean value and standard 

deviation of time duration of 

eye hits within each AOI.
Mean value and standard 

deviation of reading paths

Mean value and standard 

deviation of time duration of 

mouse hits within each AOI.Time consumption for 

performing tasks

Mean value and standard 

deviation of reading paths



Regularized Linear Regression Model
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 Notation

 Data set: 𝑿 ∈ ℝ𝑛×𝑝 (features), 𝒚 ∈ ℝ𝑛 (evaluation scores: perceived task 
complexities collected by questionnaire after performing each task)

 Coefficient vector: 𝜷 ∈ ℝ𝑝

 Error vector: 𝜺 ∈ ℝ𝑛

 Tuning parameter: 𝜆 > 0, selected by Bayesian information criterion

 Linear Model:

 𝒚 = 𝑿𝜷 + 𝜺, where 𝜺 𝑖. 𝑖. 𝑑. ~𝑁 0, 𝜎2

 Estimation: 

 𝜷 = argmin
𝜷

1

2
σ𝑖=1
𝑛 𝑦𝑖 − 𝛽0 − σ𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗

2
+ 𝜆σ𝑗=1

𝑝
𝛽𝑗

 Test using a five-fold cross validation
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Overview of Study Design
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Prediction Results
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Feature Selection Results
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Data Predictors Channels Bands Features

EEG signals

7 ECG Delta entropy

65 POz Alpha wavelet entropy

94 Fz Delta curve length

103 Fz Theta curve length

107 Fz Theta standard deviation

123 Fz Beta skewness

128 Fz Gamma wavelet entropy

143 Cz Delta standard deviation

148 Cz Theta curve length

182 C3 Delta wavelet entropy

187 C3 Delta entropy

204 C3 Alpha skewness

254 C4 Beta wavelet entropy

263 C4 Gamma wavelet entropy

278 F3 Delta standard deviation

314 F3 Gamma standard deviation

353 F4 Gamma wavelet entropy

391 P3 Beta nonlinear energy

Data Predictors Features

Eye movements 453 variance of distance

Logs

456 variance of distance

459 variance of mouse move over/out duration

460 task duration

Selected Features
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In literature:

• Alpha and Gamma bands of EEG

signals are indicators of sustained

attentions during performing visual

searching tasks (Huang et al., 2007;

Ossandón et al., 2012);

• Statistical, morphological, and time-

frequency features of EEG signals are

significantly related to cognitive load

(Wang, et al., 2016);

• Eye movements are useful physiological

data to assess the layouts (Burch et al.,

2011) and to capture the patterns of

reading paths (Rayner, 2012);

• Behavioral logs are indicators of users’

attempts and stress conditions (Sun et

al., 2014).



Diagnostics
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Distribution of Residuals Residuals v.s. Predicted Values

QQ Plot Lag-1 Autocorrelation



One-Tailed Pairwise T-Test
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Alternative Hypothesis 2>1 3>1 3>2 1>2 1>3 2>3

P-values (Evaluation Scores) 0.0003 1.0000 1.0000 0.9997 <0.0001 <0.0001

P-values (Predicted Scores) <0.0001 1.0000 1.0000 1.0000 <0.0001 <0.0001

 Bonferroni correction compensated significant level: 𝛼 =
0.05

6
≈ 0.0083.

 Conclusions

 Static node-link tree is significantly better than the collapsible node-link tree and 

zoomable nested circles;

 The predicted scores are as informative as the participants’ evaluation scores.

* 1, 2, and 3 stands for collapsible node-link tree, static node-link tree, and zoomable nested circles, respectively.
** “>” means that the former design has lower evaluation scores from participants than the latter design does to

present the same information.
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Summaries and Future Works
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 Summaries

 Gap exists between the high demand of new data visualization tools and the low efficiency of
user-centered designing processes due to the lack of unobtrusive, quantitative and online user-
centered evaluation methods;

 A data fusion method which integrate EEG signals, eye movements, and behavioral logs is
proposed to predict the visualization evaluation scores;

 The prediction results are as informative as users’ subjective ratings, thus can be further
extended to assist other qualitative evaluation methods in a quantitative manner.

 Future works

 Regression model with multiple responses in an Augmented Reality environment will be
investigated;

 Personalized recommendation via covariates-based extended matrix completion method to
recommend visualization designs for new users (cold-start) will be developed (under review);

 Visualization design elements will be considered in the study design and treated as covariates
in the model, such that this method can be generalized for various visualization designs.



Visualization of CAMNet
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