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Motivation |

@ “In practice, poor local minima are rarely a problem with large
networks. Regardless of the initial conditions, the system nearly
always reaches solutions of similar quality.”

— LeCun, Bengio, Hinton, “Deep Learning,” Nature, 2015

@ “..., while local minima are numerous, they are relatively easy to find,

and they are all more or less equivalent in terms of performance on

the test set.”
— Choromanska, Henaff, Mathieu, Ben Arous, LeCun, “The Loss Surfaces of

Multilayer Networks,” Proc. 18th Int. Conf. AISTATS, 2015

Deep neural networks have many local minima and are “critical point

indifferent:”
— What are the costs of (ever more) complicated models?
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Motivation |l

The polynomial anology and the Bias/Variance Trade-off:

— Where did the model complexity and variance go?
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Our recurring example

A description of the preceding example, as it will recur:

e “Vanilla? 2 —8 — ... — 8 — 1 feed-forward neural network with
tanh activation function.

@ Experiments range from 2 to 16 hidden layers.

@ Trained by back propagation to learn the function
f(x,y) = x + cos(y?) + exp(sin(x)).

@ Training data consists of 900 points from several uniformly sampled
“blobs” in —4 < x,y < 4.

@ Prediction surface is a grid in =5 < x,y < b.

More of a regression/function approximation perspective for ease of
illustration.
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Our recurring example

Value of the loss function, with networks of varying depth (100 retrainings
per depth).

Boxplot of residual of loss funciton
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@ Residual is still decreasing.

@ At 16 hidden layers, number of parameters (1113) has already
eclipsed the cardinality of training data (900 points).
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Where did the variance go?

Back to the motivating question:

Where did the variance go?
The answer:

Complicated network architectures may not yield a complicated
model.

o Early convergence to flat saddle point means that the model may be

closer to linear than a less complicated model — possibly yielding a
more regular model.
@ Much “residual randomness” left in the model — artifact of random

initialization and stochastic elements of training.

@ Away from training data, model predictions may be “almost” linear
random projection.
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Random model

So, complicated architectures may yield a simple, but random model.

@ The simple part is appealing — Hand, Classifier technology and the
illusion of progress. If you don’t know much about the distribution or
process(es) that gave rise to the data, then a simple model that
regresses well is to be preferred.

@ There is enough model variability to regress the training data, but no
more.

The next several slides will present some evidence for the assertion that
complicated networks may not produce a complicated model.
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Back to the beginning — initialization

We will be considering typical initialization of “vanilla” feed-forward neural
networks trained by back propogation.

@ i) Inputs are scaled and centered.

@ ii) Uniform adaptive initialization of the weight matrices,
U[-1/,/nj,1/,/nj], or normalized initialization (Glorot and Bengio),
U6/ /A F 1, VB /T ).

@ Together i) and ii) ensure (with high probability) that inputs aren't
out on the tails of the activation function.

Note that such initialization methods are essentially forced - gradients of
tanh (or other sigmoid functions) quickly go to zero if one gets too far out
on the tails.
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Back to the beginning — initialization

Continuing, we note that,

@ iii) tanh (sigmoid functions, more generally) is an extremely good
approximation to the identity function (f(x) = x) near the origin.

Together, i), ii), and iii) imply that, at initialization, a random linear map
is not a bad approximation to a neural network.
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Back to the beginning — initialization

At initialization, the network is “almost a linear map” (which becomes
“more constant with growing depth”).
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The landscape (a.k.a., our assumptions)

In the remainder we accept the mounting evidence (Choromanska,
Dauphin, Kawaguchi, Sankar, LeCun, etc.) that the following assertions
are “generally (or often) true”:
@ the number of saddle points grows " combinatorially” with number of
parameters;
@ the landscape of typical loss functions is “flat” in the vicinity of
saddles;
@ stochastic gradient descent doesn't find local minima, but settles near
one of the many saddle points (or at least a “flat minimum”);
@ these saddle points are all “almost” a global minimum for the loss
function.

Bottom line: For whatever reason (one aspect of the “theory-practice
gap"), converges to a point in feature space with small residual of the loss

function.
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Small weights

o If the weights are “small” (as they are at initialization) and one uses
tanh (or other sigmoid) activation function, the map is not all that far
from linear.

@ Vanishing of gradient problem:

o Entries in weight matrices (hence eigenvalues) are “small.”
e Chain rule for derivative mean that components of the gradient in early
layers are a product of large number of small terms.

@ In deep (or otherwise complicated) networks, the growing number of
saddle points means that weights are likely to remain small at
convergence, especially at the “front end” of a neural network.

@ In fact, experiments indicate that “most of the work is done at the
back end.”

@ So, can one replace a large portion of a deep neural network with a
random linear projection (Johnson-Lindenstrauss)?
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Small weights

With growing depth, the mean absolute value of the singular values of the
weight matrices at convergence decreases (especially “at the front end”):
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Consequences of depth

The deeper the network, the smaller the difference between initialization
and final weights.

@ Difference of mean modulus of eigenvalues between initial weight
matrix and weights at convergence for the weights between first two
hidden layers (100 retrainings):

Difference of mean modulus of eigenvalues
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Consequences of depth

The deeper the network, the smaller the difference between initialization
and final weights.
@ Spectral norm of the difference between initial weight matrix and
weights at convergence for the weights between the first two hidden
layers (100 retrainings):

Spectral norm of difference of weight matrices
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Consequences of depth

The deeper the network, the smaller the difference between initialization
and final weights.
@ Frobenius norm of the difference between initial weight matrix and
weights at convergence for the weights between first two hidden layers
(100 retrainings):

Forbenius norm of difference of weight matrices
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Model variability /variance

@ As the distance of a test point grows from the training data, do
complex models exhibit more prediction variability?

@ Examined variability of predictions at each of the seven (in each
quadrant) red points.
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Retraining variability (1st quadrant)

Box plots of variability of predictions over 100 retrainings.
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Deep models do not exhibit significantly larger interquartile ranges.
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Retraining variability (3rd quadrant)

Box plots of varlablllty of predictions over 100 retrainings.
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Again, deep models do not exhibit larger interquartile ranges.
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Model variance

Box plots of variability of predictions at (+5, +5) over 100 draws of the
training set (with subsequent training).
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Model variability /variance

@ Examined two aspects of model variability: prediction variability with
retraining, and model variance with new training data sampled from
same distribution.

@ Neither aspect of variability/variance increased significantly with
model complexity.

@ The more complex architecture does not yield a more complex model.
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Conclusion

Conclusion: Complicated network architectures may not produce a
complicated model.

@ More complicated models tend to quickly settle into “flat minima.”

@ The quick convergence yields a simple model, many layers of which
are not badly approximated by a random linear projection.

@ Thus, more complicated models may exhibit more “regularity” than
simple models and tend to generalize well.

@ Over-fitting concerns might be exaggerated?

@ The difference between initial and final weights has potential for a
usable definition of “excess model capacity.”
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