Model exploration via conditional visualisation

Catherine Hurley Maynooth University Ireland joint with Mark O' Connell, Katarina Domijan

May 17 2018

Catherine Hurley Maynooth University IrelandModel exploration via conditional visualisatior

Model exploration- why?

- See model in action, students and analysts
- Understanding black box behaviour
- Exploring lack of fit
- Compare fits
- Build better models

Conditional model visualisation, beyond 3d?

• Our approach: reduce dimensionality by conditioning

Outline

- Introductory example: Air quality data
- Condvis shiny app
- Example: Salary data
- Condtour: Animated tours of predictor space
- Case study: Glaucoma data

Introductory example: Air quality data

f2 <- loess(Ozone~Solar.R+Wind, data=airquality)</pre>

loess

Catherine Hurley Maynooth University IrelandModel exploration via conditional visualisation

Ozone v Wind, condition on Solar. R = 300

Ozone v Wind, condition on Solar. R = 300

Fade (Ozone, Wind) points by distance from Solar.R \approx 300

Ozone v Wind, condition on Solar.R animation

Fade (Ozone, Wind) points by distance from selected Solar.R value

Catherine Hurley Maynooth University IrelandModel exploration via conditional visualisation

Condvis setup

- response y
- fit *f*
- p predictors, say x_1, x_2, x_3, x_4
- one (or two) section predictors, say x₁
- remainder are conditioning predictors, here x₂, x₃, x₄

Condvis setup

- response y
- fit *f*
- p predictors, say x_1, x_2, x_3, x_4
- one (or two) section predictors, say x₁
- remainder are conditioning predictors, here x₂, x₃, x₄
- set $x_2 = u_2, x_3 = u_3, x_4 = u_4$
- let x_1^r be a sequence covering range of x_1
- plot $f(x_1^r, u_2, u_3, u_4)$ versus x_1^r
- superimpose points (y, x_1) whose (x_2, x_3, x_4) values are near (u_2, u_3, u_4)

Condvis setup

- response y
- fit *f*
- p predictors, say x_1, x_2, x_3, x_4
- one (or two) section predictors, say x₁
- remainder are conditioning predictors, here x₂, x₃, x₄
- set $x_2 = u_2, x_3 = u_3, x_4 = u_4$
- let x_1^r be a sequence covering range of x_1
- plot $f(x_1^r, u_2, u_3, u_4)$ versus x_1^r
- superimpose points (y, x_1) whose (x_2, x_3, x_4) values are near (u_2, u_3, u_4)

• modify (u_2, u_3, u_4) and watch plot change

Condvis shiny app

f3 <- loess(Ozone~Solar.R+Wind+ Temp, data=airquality)
condvis(ozone, f3, sectionvar="Wind")</pre>

- Main panel shows a plot of fit on the section, with superimposed points
- Right hand panel shows plots of conditioning predictors
- User interacts with conditioning predictors to change their values
- Plot of fit on the section changes to reflect the new condition

- Fitted relationship between Ozone and Wind depends on values of Solar.R and Temp
- Some regions have little or no data
- Extrapolation

Make Solar.R a sectionvar

Make Solar.R a sectionvar

- The fitted relationship between Ozone and (Wind, Solar.R) depends on Temp
- Some regions have little or no data
- Extrapolation

Choosing conditions

- Shows 1d or 2d displays of many condition vars
- Pair predictors with dependence: goal is to avoid selecting empty sections
- Or, use PCP of condition vars, to condition on observations

Distances

condition values: u, observation: x_i

$$d_i = d(u, x_i) = d_n(u, x_i) + \lambda M_f(u, x_i)$$

- *d_n* is the distance between numerical predictors
- M_f counts the number of mismatches between factors • $\lambda \ge 0$
- Plot points with $d_i \leq \sigma$ (threshold)

$$w_i = \max(0, 1 - d_i / \sigma)$$

• Fade point colour proportional to w_i

Catherine Hurley Maynooth University IrelandModel exploration via conditional visualisatior

Distances

- Choices for *d_n*
- Threshold = 1.5

Showing sections

- Section plot types, nn, nf, nnn, nnf etc
- Confidence intervals
- Surfaces
- Multiple fits

Example: Salary data

Chicago bank discrimination data, 1979

Catherine Hurley Maynooth University IrelandModel exploration via conditional visualisatior

Not to be confused with: partial residual plot

- Produced by effects package (Fox, Weisberg)
- Averages over educ and time
- Requires linear predictors

Example: Salary data, multiple fits

- ns uses a spline term for pexp
- svm is a support vector machine

Comparing fits, ns and svm

• M/F difference less with svm

• svm poor for low pexp

Challenges

Large p

- Use variable importance measures to select predictor subset for visualisation
- About 10 conditioning predictors is max for app
- Other predictors are fixed
- Pair predictors that are dependent
- Empty sections
- Use pre-calculated tours to visit conditioning space
 - Choose random sections
 - Use kmeans or similar and visit cluster centroids
 - Visit sections that have large residuals
 - Or, big disparities amoung fits

Challenges

Large n

- Use subset or binning in condition plots, for speed
- Examples up to n = 50K

Tour of kmeans centroids

• Artifical data: $y = sin(x_1) + x_2 + x_3$

Trellis

• Visualise dependence of y on x1, conditional on x2 and x3

- Sinusoidal pattern for y vs $\times 1$
- some intervals are large, with few points

Kmeans of x2, x3

12 centres, ordered to form a path

Condition on kmeans path

- pathlength is 34, 12 centres, plus two interpolated points
- fit is svm

Condition on kmeans path

Tour diagnostics

Shows the similarity weights at each plot on the tour
Max is about 15% of the data

• cdf of similarity weights • Very few cases have sim below .2 2 0.8 proportion of data 0.6 0.4 0.2 0.0 0.0 0.6 0.8 1.0 0.2 0.4 max k attained

Glaucoma data

PLOS study: machine learning models for glaucoma diagnosis

- 399 training and 100 test cases
- 60% of both have glaucoma
- response is glaucoma Y/N (based on optic disc and vis. field)
- predictors
 - age
 - IOP: ocularpressure
 - MD: vis. field measure
 - PSD: vis. field measure
 - GHT: vis. field measure
 - cornea: cornea thickness
 - RNFL4.mean: retinal nerve fiber layer thickness

Models: random forest, tree (C5.0), svm, knn

Citation: Kim SJ, Cho KJ, Oh S (2017) Development of machine learning models for diagnosis of glaucoma. PLoS ONE 12(5): e0177726. https://doi.org/10.1371/journal. pone.0177726

Glaucoma data, compare rf and c5

- section vars have highest varImp: PSD and RNFL4.mean
- Show both training (green) and test data (pink)
- Point size represents distance (instead of fade)

Glaucoma data

- Where are wrong predictions?
- Reduce threshold to zero: points on section only

Glaucoma data

- Where are wrong predictions?
- Precalculate tour for condvis
- We see
 - Mostly false positive, for c5
 - Mostly at MD \approx 0
 - Iow IOP

Concluding remarks

- Condvis is for
 - interactively exploring and comparing model fits
 - assessing if data supports the model
- Condvis works for any fit for which predict method exists or can be provided
- Augment fit with CI for those fits that provide it
- Bayesian fits:
 - plot median of posterior distribution of E(y|x)
 - or, with MCMC, plot median of sample from the posterior
- Conditional visualisation for any display
 - Related to brushing

Concluding remarks

- condvis is on CRAN
- uses base R interactive graphics/shiny
- new shiny only front-end in progress
- Extensions: nested predictors
- Reference: O'Connell et al. "Conditional Visualization for Statistical Models: An Introduction to the condvis Package in R". JSS 2017

catherine.hurley@mu.ie