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Model exploration– why?

See model in action, students and analysts
Understanding black box behaviour
Exploring lack of fit
Compare fits
Build better models
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Conditional model visualisation, beyond 3d?
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?
Our approach: reduce dimensionality by conditioning
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Outline

Introductory example: Air quality data
Condvis shiny app
Example: Salary data
Condtour: Animated tours of predictor space
Case study: Glaucoma data
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Introductory example: Air quality data
f2 <- loess(Ozone~Solar.R+Wind, data=airquality)
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Ozone v Wind,condition on Solar.R = 300
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Show (Ozone, Wind) points with Solar.R ≈ 300
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Ozone v Wind, condition on Solar.R = 300
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Fade (Ozone, Wind) points by distance from Solar.R ≈ 300
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Ozone v Wind, condition on Solar.R animation
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Condvis setup

response y
fit f
p predictors, say x1, x2, x3, x4

one (or two) section predictors, say x1

remainder are conditioning predictors, here x2, x3, x4

set x2 = u2, x3 = u3, x4 = u4

let x r
1 be a sequence covering range of x1

plot f (x r
1 , u2, u3, u4) versus x r

1
superimpose points (y , x1) whose (x2, x3, x4) values are near (u2, u3, u4)

modify (u2, u3, u4) and watch plot change
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Condvis shiny app
f3 <- loess(Ozone~Solar.R+Wind+ Temp, data=airquality)
condvis(ozone, f3, sectionvar="Wind")

Main panel shows a plot of fit on the section, with superimposed points
Right hand panel shows plots of conditioning predictors
User interacts with conditioning predictors to change their values
Plot of fit on the section changes to reflect the new condition
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Condvis: Air quality data
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Condvis: Air quality data

Fitted relationship between Ozone and Wind depends on values of
Solar.R and Temp
Some regions have little or no data
Extrapolation
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Condvis: Air quality data
Make Solar.R a sectionvar
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Condvis: Air quality data

Make Solar.R a sectionvar

The fitted relationship between
Ozone and (Wind, Solar.R)
depends on Temp
Some regions have little or no
data
Extrapolation
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Choosing conditions

Shows 1d or 2d displays of many
condition vars
Pair predictors with dependence: goal is
to avoid selecting empty sections
Or, use PCP of condition vars, to
condition on observations
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Distances
condition values: u, observation: xi

di = d(u, xi) = dn(u, xi) + λMf (u, xi)

dn is the distance between numerical predictors
Mf counts the number of mismatches between factors
λ ≥ 0

Plot points with di ≤ σ (threshold)

wi = max(0, 1− di/σ)

Fade point colour proportional to wi
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Distances
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Showing sections

Section plot types, nn, nf, nnn, nnf etc
Confidence intervals
Surfaces
Multiple fits
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Example: Salary data
fit1 <- lm(log(salary) ~ gender+poly(pexp,3)+

time+educ , data=sal)
condvis(sal, fit1, sectionvars=c("pexp","gender"))

Chicago bank discrimination data, 1979
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Not to be confused with: partial residual plot
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Produced by effects package (Fox, Weisberg)
Averages over educ and time
Requires linear predictors
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Example: Salary data, multiple fits

ns uses a spline term for pexp
svm is a support vector machine
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Comparing fits, ns and svm

M/F difference less with
svm

svm poor for low pexp
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Challenges

Large p

Use variable importance measures to select predictor subset for
visualisation
About 10 conditioning predictors is max for app
Other predictors are fixed
Pair predictors that are dependent
Empty sections
Use pre-calculated tours to visit conditioning space

I Choose random sections
I Use kmeans or similar and visit cluster centroids
I Visit sections that have large residuals
I Or, big disparities amoung fits
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Challenges

Large n

Use subset or binning in condition plots, for speed
Examples up to n = 50K
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Tour of kmeans centroids
Artifical data: y = sin(x1) + x2 + x3

y
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Trellis
Visualise dependence of y on x1, conditional on x2 and x3
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Kmeans of x2, x3
12 centres, ordered to form a path
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Condition on kmeans path
pathlength is 34, 12 centres, plus two interpolated points
fit is svm
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Condition on kmeans path
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Tour diagnostics

• Shows the similarity weights
at each plot on the tour
• Max is about 15% of the
data
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Glaucoma data
PLOS study: machine learning models for glaucoma diagnosis

399 training and 100 test cases
60% of both have glaucoma
response is glaucoma Y/N (based on optic disc and vis. field)
predictors

I age
I IOP: ocularpressure
I MD: vis. field measure
I PSD: vis. field measure
I GHT: vis. field measure
I cornea: cornea thickness
I RNFL4.mean: retinal nerve fiber layer thickness

Models: random forest, tree (C5.0),
svm, knn
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Glaucoma data,compare rf and c5
section vars have highest varImp: PSD and RNFL4.mean
Show both training (green) and test data (pink)
Point size represents distance (instead of fade)

Catherine Hurley Maynooth University Ireland joint with Mark O’ Connell, Katarina DomijanModel exploration via conditional visualisation May 17 2018 32 / 36



Glaucoma data
Where are wrong predictions?
Reduce threshold to zero: points on section only
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Glaucoma data

Where are wrong predictions?
Precalculate tour for condvis
We see

I Mostly false positive, for c5
I Mostly at MD ≈ 0
I low IOP
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Concluding remarks

Condvis is for
I interactively exploring and comparing model fits
I assessing if data supports the model

Condvis works for any fit for which predict method exists or can be
provided
Augment fit with CI for those fits that provide it
Bayesian fits:

I plot median of posterior distribution of E(y|x)
I or, with MCMC, plot median of sample from the posterior

Conditional visualisation for any display
I Related to brushing
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Concluding remarks

condvis is on CRAN
uses base R interactive graphics/shiny
new shiny only front-end in progress
Extensions: nested predictors
Reference: O’Connell et al. “Conditional Visualization for Statistical
Models: An Introduction to the condvis Package in R”. JSS 2017

catherine.hurley@mu.ie
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