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1. Introdution

Data mining deals with omplex, high-dimensional data. This means that datasetsoften ombine di�erent kinds of struture. For example:

• There might be several di�erent subgroups within the data, eah desribed by adi�erent linear relationship.
• Some lusters might be tightly grouped with respet to one subset of variables,whereas other lusters are grouped aording to di�erent variables.

• A few outliers an distort otherwise simple struture; adaptive methods forignoring them are wanted.One wants a method that enables the analyst to sequentially extrat simple struturesin the data.
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To illustrate the problem in the ontext of regression, onsider the following plot ofthe number of external links against the number of internal links for the webpages inthe Wikipedia. This is learly a mixture of linear strutures.
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The graph of the number of outgoing links for Wikipedia pages against the size ofpage is less lear, but the same kind of struture is still present.
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More generally, one wants to �nd nonparametri regression struture, of the kindshown below, in high (or moderately high) dimensional spaes.
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To start simply, suppose one has two kinds of linear strutures and pure noise, e.g.:

• 40% of the data follow Y = α0 +
∑p

i=1
αiXi + ǫ

• 30% of the data follow Y = β0 +
∑p

i=1
βiXi + ǫ

• 30% of the data are noise.One an imagine that the two linear strutures orrespond to some unmeasuredategorial ovariate, and the pure noise represents a third ategory of ases.What an one do to analyze ases like this? One approah is to use a Bayesianmixture model, but this assumes that the analyst has some strong prior knowledgeabout the kinds of struture that are present and the number of mixture omponents.Alternatively, one an use S-estimators, whih look for the thinnest strip (think of atransparent ruler) whih overs some prespei�ed (but larger than 50%) fration ofthe data.
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All these strategies break down in high dimensions, or when the strutures of interestontain less than 50% of the sample, or when �tting omplex nonlinear models.We want a solution strategy that applies to more general ases, inluding:

• linear and non-linear regression in high dimensions,

• multidimensional saling,
• luster analysis.The method desribed here an be extended to other ases as well.Our approah is to develop the method of elemental sets, proposed by A. C. Atkinson(�Masking Unmasked,� Biometrika; 1986) and developed further by Doug Hawkins(�The Auray of Elemental Set Approximations for Regression,� JASA; 1993). Thismethod tries to �nd a small number of observations that orrespond to a struture ofinterest, and then �grow� that set.
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2. Hidden Struture in Regression

Consider the graph below, for a simple regression problem. It is lear that the dataome from two di�erent models, and that any naive attempt at regression will missboth of the interesting strutures and �nd some kind of average solution.
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For linear regression, assume the observations are {Yi,Xi} for i = 1, . . . n and that Qperent of these follow the model

Yi = β0 + β1Xi1 + . . . + βpXip + ǫi where ǫi ∼ N(0, σ)where Q, β, and σ are unknown. The rest of the data have no relationship between Yiand Xi.One an refer to the Q% of the data as �good� and the rest as �bad�.Simple Idea:Start small, with a subsample of only good observations

⇒ add only good observations
⇒ end with a large subsample of good observations.General proedure:1. Strategially hoose an initial set of d starting subsamples Sj , eah of size m.2. Grow the subsamples by adding onsistent data.3. Selet the largest subsample. 9



This �gure shows the true lines (unbroken), the elemental set lines (short dashes) andthe Bayes mixture model (long dashes).
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The method for hoosing the starting subsamples and growing them e�iently isimportant in pratie.One starts with a guess about Q, the fration of good data. In general, this isunknown, so one might pik a value that is reasonable given

• domain knowledge about the data olletion
• the point at whih a fration is so small that there is little sienti� interest.From the full dataset {Yi,Xi} one selets, without replaement, d subsamples Sj ofsize m.One needs to hoose d and m to ensure that at least one of the starting subsamples

Sj has a very high probability C of onsisting entirely of good data (i.e., data thatome from the same unknown struture).
11



Preset a probability C that determines the hane that the algorithm will work.The value m, whih is the size of the starting-point random subsamples, should bethe smallest possible value that allows one to alulate a goodness-of-�t measure. Inthe ase of multiple linear regression, that value is p + 2, and a natural goodness-of-�tmeasure is R2.One solves the following equation for d:
C = IP[ at least one of S1, . . . , Sd is all good ] = 1 − (1 − Qp+2)d.

Example: Q = .8, c = .95, m = 3 (for simple linear regression, with p = 1):

.95 = 1 − [1 − (.8)p+2]d → d = 5
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Given the d starting-point subsamples Sj , one grows eah one of them by addingobservations that do not appreiably lower the goodness-of-�t statisti (R2).Coneptually, for a partiular Sj , one ould yle through all of the observations, andon eah yle augment Sj by adding the observation that provided the largest value of

R2. This yling would ontinue until no observation an be added to Sj withoutsubstantially dereasing the R2.One does this for all of the subsamples Sj . At the end of the proess, eah augmented

Sj would have size mj and goodness-of-�t R2
j . The augmented subsample thatahieves a large value of mj and a large value of R2

j is the one that aptures the mostimportant struture in the data.Then one an remove the data in Sj and iterate to �nd the next-most importantstruture in the dataset.
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In pratie, the oneptual algorithm whih adds one observation per yle isexpensive when the dataset is large or when one is �tting a omplex model (e.g.,doing MARS �ts rather than multiple regression). For this reason, we use a two-stepproedure to add observations.Fast Searh
• Sequentially sweep through all observations not in Si.

• If the obsevation improves the �tness measure (or perhaps only lowers it by avery small amount), then
→ add observation to Sj

→ set mj = mj + 1.If mj is large, say Qn/2,then implement slow searh.Slow Searh

• Add the observation that improves the FM the most or dereases the �tnessmeasure by not more than some prehosen threshold.
• Repeat until no observation an be added.
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The analyst may pik a threshold that seems appropriately small and a fration of nthat seems appropriately large. These hoies determine the runtime of the algorithmand should re�et pratial onstaints.The fast searh is greedy, and the order of observations in the yling matters. Theslow searh is less greedy; order does not matter, but it adds myopially. The fastsearh an add many observations per yle through the data, but the slow searhalways adds exatly one.If speed is truly important, then there are other ways to aelerate the algorithm. Astandard strategy would be to inrease the number of starting-point subsamples andombine those that provide similar models and �ts as they grow.

The main onern is not to enumerate all ( n

⌈Qn/100⌉

) possible subsamples.
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Note that:1. One does not need to terminate the searh at some preset fration; one an justgrow until the goodness-of-�t measure deteriorates too muh.2. The goodness-of-�t measure should not depend upon the sample size. For SLRthis is easy, sine R2 is just the proportion of variation in Y explained by X. Forlarger p, if one is doing stepwise regression to selet variables, then one wantsto use an AIC or Mallows' Cp statisti to adjust the tradeo� in �t between thenumber of variables and the sample size.3. Other measures of �t are appropriate for nonparametri regression, suhas ross-validated within-subsample squared error. But this adds to theomputational burden.4. One an and should monitor the �t as new observations are added. Whenone starts to add bad data, this is quikly visible in a plot�there is a lear�slippery-slope� e�et.
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To see how the slippery-slope ours, and the value of monitoring �t as a funtion oforder of seletion, onsider the plot below. This plot is based on using R2 for �tnessand a line + uniform noise model. The total sample size is 80, and 70 observationswere generated with moderate noise from a line; the knee in the urve learly showswhen one should stop adding observations.
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3. Hidden Struture in Multidimensional Saling

Multidimensional saling (MDS) starts with a proximity matrix that givesapproximate distanes between all pairs in a set of objets. These distanes are oftenlose to a true metri.The purpose of MDS is to �nd a low-dimensional plot of the objets suh that theinter-objet distanes are as lose as possible to the values given in the proximitymatrix. That representation automatially puts similar objets near eah other. Thisis done in terms of a least squares �t to the values in the proximity matrix, byminimizing the stress funtion:Stress(z1, . . . , zn) =





∑

i 6=i′

(dii′ − ‖zi − zi′‖)





1/2

where zi is the loation assigned to pseudo-objet i in the low-dimensional spae and

dii′ is the entry in proximity matrix. 18



The lassi example is to take the entries in the proximity matrix to be the drive-timebetween pairs of ities. This is not a perfet metri, sine roads urve, but it isapproximately orret. MDS �nds a plot in whih the relative position of the itieslooks like it would on a map (exept the map an be in any orientation; north andsouth are not relevant).MDS solutions are extremely suseptible to bad data. For example, if one had a �atttire while driving from Baltimore to DC, this would reate a seemingly large distae.The MDS algorithm would distort the entire map in an e�ort to put Baltimore farfrom DC and still respet other inter-ity drive times.A very small proportion of outliers, or objets that do not �t well in a low-dimensionalrepresentation, an ompletely wrek the interpretability of an MDS plot. In manyappliations, suh as text retrieval, this is a serious problem.
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3.1 MDS Example

To test elemental set methods for MDS, onsider the latitudes and longitudes of 99eastern U.S. ities. The Eulidean distanes between these ities gave the proximitymatrix; the only stress in the MDS map is due to the urvature of the earth.Perturb the proximity matrix by in�ating a random proportion 1 − Q of the entries:Bad Data Distortion (%) Stress150 1.0282 500 2.394150 1.79110 500 28.196150 3.34530 500 9.351
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To make things more interesting, we use not the traditional MDS using the stressmeasure de�ned previously, but rather Kruskal-Shephard non-metri saling, in whihone �nds {zi} to minimizeStressKS(z1, . . . , zn) =

∑

i 6=i′ [θ((‖zi − zi′‖) − dii′ ]
2

∑

i 6=i′ d2
ii′where θ(·) is an arbitrary inreasing funtion �t during the minimization. Theresult is invariant to monotoni transformations of the data, whih is why it isnonparametri.This minimization uses an alternating algorithm that �rst �xes θ(·) and �nds the

{zi}, and then �xes the {zi} and uses isotoni regression to �nd θ(·). This shows thatthe algorithm an be used in omplex �ts.Our goal is to herry-pik the largest subset of ities whose interity distanes an berepresented with little stress.
21



In MDS, the size m of the initial subsamples is 4 (sine three points are alwaysoplanar). We took C = .99 as the prespei�ed hane of getting at least one goodsubsample, and for Q = .8 this implies we need 9 starting samples. The results are inthe table. True Distane Original na n∗ Final

1 − Q (%) Distortion (%) Stress Stress150 1.028 80 80 4.78e-122 500 2.394 80 80 4.84e-12150 1.791 80 80 4.86e-1210 500 28.196 80 80 4.81e-12150 3.345 80 77 4.86e-1230 500 9.351 80 78 4.78e-12
• Note: The stress of the undistorted dataset was 8.42 × 10−12.
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As before, one should inspet order-of-entry plots that display the stress against theities hosen for inlusion. The following two plots are typial, and show the knee inthe urve that ours when one begins to add bad ities.
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4. Cluster Analysis

Traditional luster analysis tends to perform poorly in high dimensions; a fewoutliers an distort the analysis (Kaufman & Rousseeuw 1990), and the Curse ofDimensionality makes it di�ult to disover the hidden struture (Hall et al. 2006;Bikel & Levina 2008). For these reasons, we apply the herry-piking heuristi to theproblem of multivariate luster analysis.An example of loally low-dimensional lustering arises in biometri identi�ationof typists from patterns in their keystroke hold times and inter-key latenies. Thisappliation is important in omputer seurity, where one hopes to disover someonewho has stolen a password by the divergene of their typing rhythms from those ofthe genuine user.
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One study of keystroke patterns (Killourhy & Maxion 2008) had 51 typists type thesame ten letter password (`.tie5Roanl', hosen beause it ontains both awkward andommon ombinations on the qwerty keyboard, and a shift, exerising a range oftyping dynamis). The partiipants typed the �strong� password 400 times, in eightsets of 50. Eah typing of the password produed a vetor in IR21, onsisting of elevenhold times (one for eah of the ten letters and one for the Return key typed atthe end of the password) and ten keydown-keydown latenies (one for eah pair ofonseutively-typed keys).Good biometri identi�ation is ahieved if the di�erent typists show stronglustering. However, it was suspeted that the harateristi patterns of a typistmight show up learly in only some of the omponents of the vetor, and that thoseomponents would di�er aording to the typist.
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The parallel-oordinate plot depits the typing rhythms of eah of the �ve typists.Eah typist's timing omponents are shown in a separate panel so styles may beompared. 26



Cherry-Piking Algorithm for Clustering:Step 1. Seeding: Three observations are randomly hosen as a luster seed. For thisseed sample, a measure of dispersion is alulated for eah of the 21 variables(i.e., the ratio of the sample standard deviation to its mean). The two variableswith the smallest dispersions aording to this measure are identi�ed.Step 2. Seletion: Using only these two low-dispersion variables, the bivariateovariane matrix for the lustered observations is alulated. For all theobservations not yet in the luster, the squared Mahalanobis distane to the meanof the luster is alulated. Eah distane was ompared with the 99th perentileof the χ2
2 distribution, and those with distanes below a threshold are added tothe luster.Step 3. Termination: The iteration proedure in step 2 is repeated until the lusteronverges (i.e., no new observations are added). The size of the resulting lusteris ompared to the expeted size of a luster (e.g., 50±5 elements). If the sizesdo not math, the luster is disarded, and we return to Step 1 to �nd a betterluster.
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This herry-piking lustering algorithm was run on the 250-observation keystrokedata. The algorithm saved �ve lusters, eah of whih happened to ontain 50observations (but this was hane, not manipulation). Breakout by TypistCluster Variable 1 Variable 2 1 2 3 4 51 Hold ( Shift r ) Hold ( l ) 1 48 0 1 02 Hold ( period ) Lateny ( l - Return ) 2 1 1 46 03 Lateny ( n - l ) Hold ( l ) 0 0 44 0 64 Lateny ( �ve - Shift r ) Hold ( Shift r ) 2 0 4 3 415 Hold ( �ve ) Hold ( l ) 45 1 1 0 3Table 1: A summary of the lustering of the keystroke data. The two variable olumnslist whih variables the luster seleted. The �nal �ve olumns break down eah lusterinto whih typists' observations were inluded in the luster. In eah ase, the lusterroughly orresponds to data from a single typist.
28



5. Summary

• We have desribed a strategy for iterative struture disovery in omplex datasets.

• It works in omputer-intensive appliations, but one needs smart searhalgorithms; saling to large datasets is feasible but requires are.

• We an make probabilisti statements about the hane of having a goodstarting-point subsample, and this almost leads to a probabilisti guarantee onthe result, but not quite.
• Simulation shows good performane in many appliations.
• The method is fairly straightforward for regression and nonparametri regression,MDS, and luster analysis.
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