
Unifying Big Data Workloads 
in Apache Spark

Hossein Falaki
@mhfalaki



Outline

• What’s Apache Spark
• Why Unification
• Evolution of Unification
• Apache Spark + Databricks
• Q & A



What’s Apache Spark



What is Apache Spark?

General cluster computing engine
that extends MapReduce

Rich set of APIs and libraries

Large community: 1000+ orgs,
clusters up to 8000 nodes

Apache Spark, Spark and Apache are trademarks of the Apache Software Foundation

SQLStreaming ML Graph

…

DL



Why Unification?



Unique Thing about Spark

Unification: same engine and same API for diverse use cases
• Streaming, batch, or interactive
• ETL, SQL, machine learning, or graph
• Scala, Python, R, and SQL

This talk: Why unification? And how has it evolved in Spark?



Why Unification?



Why Unification?

MapReduce: a general engine for batch processing



MapReduce

General batch
processing

Pregel

Dremel Millwheel

Drill

Giraph

ImpalaStorm

S4 . . .

Specialized systems
for new workloads

Big Data Systems Today

Hard to manage, tune, deployHard to combine in pipelines



MapReduce

General batch
processing

Unified engine

Big Data Systems Today

Pregel

Dremel Millwheel

Drill

Giraph

ImpalaStorm

S4 . . .

Specialized systems
for new workloads



Key Idea

MapReduce + data sharing (RDDs) captures most distributed apps

StreamingIterative



Benefits of Unification

1. Simpler to use and operate

2. Code reuse: e.g. only write monitoring, FT, etc once

3. New apps that span processing types: e.g. interactive 
queries on a stream, online machine learning



An Analogy

Specialized devices Unified device

New applications



How Well Does It Work?

• 75% of users use multiple Spark components

• Competitive performance on diverse workloads
H

iv
e

Im
pa

la

Sp
ar

k

0

10

20

30

40

50

Re
sp

on
se

 T
im

e 
(s

ec
)

SQL

M
ah

ou
t

Gr
ap

hL
ab

Sp
ar

k

0

10

20

30

40

50

60

Re
sp

on
se

 T
im

e 
(m

in
)

ML
St

or
m

Sp
ar

k

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

B/
s/

no
de

)

Streaming



Evolution of Unification



Challenges

Spark’s original “unifying abstraction” was RDDs: DAG of 
map/reduce steps given as Java functions on Java objects

Two challenges:
1. Richness of optimizations: hard to understand the computation
2. Changing hardware limits: I/O-bound → compute-bound



Solution: Structured APIs

New APIs that act on structured data (known schema) and make 
semantics of computation more visible (relational ops)
• Spark SQL engine + DataFrames + Datasets

Enable rich optimizations similar
to databases and compilers



Execution Steps

Logical 
Plan

Physical 
Plan

Catalog

Optimizer
RDDs

…

Data
Source

API

SQL
AST

Code

Generator

Data 
Frame Dataset



Example: DataFrame API

DataFrames hold rows with a known schema and offer 
relational operations on them through a DSL

> sparkR.session()

> users <- sql(“select * from users”)

> ca.users <- users[users$state == “CA”]

> nrow(ca.users)

> ca.users %>% groupBy(“name”) %>% avg(“age”)

> dapply(ca.users, function(df) { df$age + rnorm(nrow(df)) }, ...)

Expression AST



What Structured APIs Enable

1. Compact binary representation
2. Optimization across operators (join order, pushdown, etc)
3. Runtime code generation

0 2 4 6 8 10

RDD Scala

RDD Python

DataFrame Scala

DataFrame Python

DataFrame R

sSeconds



New in 2.2 & 2.3: Structured Streaming

High-level streaming API built over DataFrames
• Event time, windowing, sessions, transactional sinks
• Arbitrary or Customized Stateful Aggregation
• Stream-to-stream joins

Supports interactive & batch queries
• Ad-hoc queries via JDBC, joins with static data

Works by just incrementalizing static DataFrame queries!



> logs <- read.df(source = "json”, path = "s3://logs")

> logs %>%

groupBy(“userid”, “hour”) %>% 

avg(“latency”) %>%

write.df(source = "jdbc”, path = "jdbc:mysql//...")

Example: Batch Aggregation



> logs <- read.stream(source = "json”, path = "s3://logs")

> logs %>% 

groupBy(“userid”, “hour”) %>%

avg(“latency”) %>% 

write.stream(source = "jdbc”, path = "jdbc:mysql//...")

Example: Continuous Aggregation



Incremental Execution

Scan Files

Aggregate

Write to MySQL

Scan New Files

Stateful 
Aggregate

Update MySQL

Batch Continuous

Automatically
transformed



Benefits of Structured Streaming

1. Results always consistent with a batch job on a prefix of data

2. Same code and libraries run in both modes

3. Ad-hoc queries on consistent snapshots of state



Apache Spark: The First Unified Analytics Engine

Runtime	
Delta
Spark	Core	Engine

Big Data Processing
ETL + SQL +Streaming

Machine Learning
MLlib + SparkR

Uniquely combines Data & AI technologies



+



Databricks’ Unified Analytics Platform

DATABRICKS RUNTIME

COLLABORATIVE WORKSPACE

Delta SQL Streaming

Powered by

Data Engineers Data Scientists

CLOUD NATIVE SERVICE

Unifies Data 
Engineers and 
Data Scientists

Unifies Data and 
AI Technologies

Eliminates 
infrastructure 
complexity



Conclusion
Unified computing models are essential for usability & performance
• Same results across batch, interactive & streaming
• Powerful cross-library optimizations
• Same functionality across programming languages

In most areas of computing, we converged to unified systems
• UNIX OS, general-purpose languages, SQL, etc
• Why not in cluster computing?
• And that’s Unified Analytics Platform

– With Apache Spark at the core of Databricks Runtime

+ 



Thank You


