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What's Apache Spark
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What is Apache Spark?

General cluster computing engine Streamlng SQL ML Graph DL

that extends MapReduce /

APACHE

Rich set of APIs and libraries SprK
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Large community: 1000+ orgs,
clusters up to 8000 nodes
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Why Unification?
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Unique Thing about Spark

Unification: same engine and same API for diverse use cases
« Streaming, batch, or interactive
« ETL, SQL, machine learning, or graph
« Scala, Python, R, and SQL

This talk: Why unification? And how has it evolved in Spark?
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Why Unification?

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
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Why Unification?

MapReduce: a general engine for batch processing

We wrote the first version of the MapReduce library in
February of 2003, and made significant enhancements to
it in August of 2003, including the locality optimization,
dynamic load balancing of task execution across worker

machines, etc. Since that time, we have been pleasantly
surprised at how broadly applicable the MapReduce li-
brary has been for the kinds of problems we work on.
It has been used across a wide range of domains within
Google, including:
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Big Data Systems Today

Pregel Giraph

Dremel :
MapReduce » Millwheel
Storm  |mpala

Drill  S4
General batch Specialized systems
processing for new workloads
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Big Data Systems Today
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Key ldea

MapReduce + data sharing (RDDs) captures most distributed apps

terative Streaming
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Benefits of Unification

1. Simplerto use and operate
2. Codereuse: e.g. only write monitoring, FT, etc once

3. New apps that span processing types: e.g. interactive
queries on a stream, online machine learning
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New applications

An Analogy
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Specialized devices Unified device
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How Well Does It Work?

« 75% of users use multiple Spark components

« Competitive performance on diverse workloads
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-volution of Unification
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Challenges

Spark’s original “unifying abstraction” was RDDs: DAG of
map/reduce steps given as Java functions on Java objects

Two challenges:
1. Richness of optimizations: hard to understand the computation
2. Changing hardware limits: 1/0-bound > compute-bound

#databricks



Solution: Structured APlIs

New APIs that act on (known schema) and make
of computation more visible (relational ops)
« Spark SQL engine + DataFrames + Datasets

Enable rich optimizations similar
to databases and compilers

Spark SQL: Relational Data Processing in Spark

Michael Armbrustf, Reynold S. Xint, Cheng Liant, Yin Huait, Davies Liut, Joseph K. Bradley',
Xiangrui Meng Tomer Kaftan Michael J. Franklln1 Ali Ghodsit, Matei Zaharia'*

tDatabricks Inc.  *MIT CSAIL  *AMPLab, UC Berkeley

While the popularity of relational systems shows users often

module in Apache Spark that integrates rela- prefer writing declarative queries, the relational ap)

th Spark’s functional pmgr.\mmmg API. Built
N L let

mers leverage the benefits of relational processing (eg dele atl ve
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Execution Steps

Optimizer Code
= —=
Generator

Data

Source -
AP]
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Example: DataFrame API

DataFrames hold rows with a known schema and offer
relational operations on them through a DSL

> sparkR.session()

> users <- sql(“select * from users”)

> ca.users <- users[usersS$state == “CA”]
\ J

> nrow(ca.users) Expression AST

> ca.users %>% groupBy(“name”) %>% avg(“age”)

> dapply(ca.users, function(df) { dfSage + rnorm(nrow(df)) }, ..

-)
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What Structured APIs Enable

1. Compact binary representation
2. Optimization across operators (join order, pushdown, etc)
3. Runtime code generation

DataFrameR
DataFrame Python

DataFrame Scala
RDD Python
RDD Scala
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New in 2.2 & 2.3: Structured Streaming

High-level streaming API built over DataFrames

« Event time, windowing, sessions, transactional sinks
« Arbitrary or Customized Stateful Aggregation
« Stream-to-stream joins

Supports interactive & batch queries
« Ad-hoc queries via JDBC, joins with static data

Works by just incrementalizing static DataFrame queries!
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Example: Batch Aggregation

> logs <- read.df(source = "json”, path = "s3://logs")

> logs %>%
groupBy (“userid”, “hour”) 9%>%
avg(“latency”) %>%

write.df(source = "jdbc”, path = "jdbc:mysql//...")
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Example: Continuous Aggregation

> logs <- read.stream(source = "json”, path = "s3://logs")

> logs %>%
groupBy (“userid”, “hour”) %>%
avg(“latency”) %>%

write.stream(source = "jdbc”, path = "jdbc:mysql//...")



Incremental Execution

Batch Continuous

Automatically
transformed

—)
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Benefits of Structured Streaming

1. Results always consistent with a batch job on a prefix of data
2. Same code and libraries run in both modes

3. Ad-hoc queries on consistent snapshots of state
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Apache Spark: The First Unified Analytics Engine

Uniquely combines Data & Al technologies

NSy,
4 f/cf.) .
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Big Data Processing Machine Learning
ETL + SQL +Streaming MLIib + SparkR
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Databricks’ Unified Analytics Platform

Unifies Data
Engineers and
Data Scientists

Data Engineers Data Scientists

Unifies Data and
Al Technologies

Delta SQL  Streaming ‘Studio' % TensorFlow

Eliminates
infrastructure
complexity

@ databricks



Conclusion

Unified computing models are essential for usability & performance
« Same results across batch, interactive & streaming
« Powerful cross-library optimizations
« Same functionality across programming languages

In most areas of computing, we converged to unified systems
« UNIX OS, general-purpose languages, SQL, etc

« Why notin cluster computing? "\Z
« And that’s Unified Analytics Platform S APACHE K
- With Apache Spark at the core of Databricks Runtime pqr -
+
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Thank You
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