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Abstract 

 

Financial turmoil is a fear or a lucrative feature for a 

latent or a set of latent reasons to the investors or money 

makers respectively. But obtaining a quick prediction of 

a threshold or volatility is a big challenge from a huge 

data that continuously gets bigger with its frame. A step 

by step approach of quickly identifying the model for the 

most important latent variable has been inaugurated for 

demonstrating the capricious behavior of the time series 

pattern of the original data using the optimum number of 

predictor(s). There are several methods in Time Series 

Analyses viz Moving Average Method, etc. Attempts 

have been made here to develop a time series model 

(along with the optimum number of set of characteristics 

or parameters) that can predict the stock prices’ pattern 

as well as a volatility (or volatilities). It is also called the 

2D time series model since it adopts the Moving 

Variance Approach.  

 

Key Words: Adjusted R-square, BIC, Correlation, 

Granger’s causality test, Spectrum, VARMAX Model. 
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Why?  

Volatility in Stock Prices?  

It signifies financial turmoil.  

How? 

  To measure Volatility in Stock Prices? 

Observing Volatility Index (VIX) as 

introduced by Chicago Board Option 

Exchange (CBOE).  

Observed by Whom? 

Investors since VIX is often referred  

as the “investor fear gauge.”  

Widely being followed by financial 

companies, news articles in the Wall 

Street Journal, Barron’s and other 

leading financial publications.  

What to Follow? 
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Wide range of strike prices of S&P 500 index 

option prices.  

Volatility in these Strike Prices as 

measured by VIX heuristic, 

demonstrates the market’s 

expectation and latest thinking of 

industry practitioners. 

Solution? 

  How and Where Does S&P 500 index Stock 

Price Dance Much Over Time? 

A Moving Variance - Time Series 

Analyses of the Volatility of the 

Stock Prices 

 

 

1. Introduction 

 

All financial organizations want to predict the financial 

turmoil or volatility for implementing its short run or 

long run derivatives and/or prerequisites as early as 

possible. Volatility in Stock Prices signifies the financial 

turmoil. Knowing the behavior of S&P 500 index Stock 

Price over time demonstrates the market’s expectation 

and latest thinking of industry practitioners. However, at 

every time span, the changing behavior of the huge 
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density of stock prices indicates new direction(s) in the 

stock market.  

 

Volatility in Stock Prices can be measured observing the 

Volatility Index, VIX heuristic, as introduced by 

Chicago Board Option Exchange (CBOE). It is observed 

by the investors since VIX is often referred as the 

“investor fear gauge.” The VIX is widely being followed 

by financial companies, news articles in the Wall Street 

Journal, Barron’s and other leading financial 

publications. Wide range of strike prices of S&P 500 

index option prices are seriously followed by money 

makers.   

 

 

A time series analyses of the of the S&P 500 index strike 

price-changes over time can give a message of volatility. 

As such the topic of this paper is the time series analyses 

of the S & P stock prices. The resultant time series model 

checks the moving variances of the residuals to identify 

which set of few time points contribute the highest 

variation in the prices. The money makers want to 

predict these time points. 
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2. Methods and Methodology 

 

It is better to first asses the time series pattern like trend 

or cyclic or seasonal or irregular variation of the data for 

each of the key variables of the data. The scatter plot or 

any other graph can be some options to do so. From the 

summary and descriptive statistics of the data, the 

relationship among the key variables can be guessed. 

Standardization and detrending of the key variables 

should be performed for increasing the compatibility of 

them. Optimum lag period of the VARMAX (Vector 

Auto Regressive Model) (Shumway et al [2]) model can 

be found for the data along-with the lowest BIC. 

 

The best response variable and the best overall set of 

predictors for the VARMAX model having the 

predefined lag with the highest adjusted R-square for the 

specific regressed variable can be obtained. All of the 

variables within the VARMAX model should be 

checked whether all have significant contribution in 

prediction using Granger’s individual causality test. All 

possible combinations of the set of predictors and the 

subset of the predictors for various lags lower than or 



7 
 

equal to the optimum lag obtained (from the optimum 

VARMAX model) for the selected response variable 

should be generated.  

 

Later all possible combination of the simple type model 

like ARIMA (p,r,q) (or SARIMA if there is any cyclic 

pattern in the time series data evident from graph, etc) 

for all possible combination of lags of the lower than or 

equal to the optimum lag obtained (from the optimum 

VARMAX model) for each of the values of p,r,q for the 

ARIMA (or SARIMA) models can be generated. For 

each of the set of the combination of predictors, the 

ARIMA model which has the lowest BIC should be 

selected. The final ARIMA model having the lowest BIC 

(Bayesian Information Criterion) ARIMA models 

should be selected among the least BIC ARIMA models 

obtained from each combination of the set of predictors.  

 

The Auto Correlation Function Plot of the residual (data 

– fitted model) should be checked whether it diminishes 

for lags other than 0. The Spectrum plot should be 

checked whether it has the uniform spikes pattern 

showing the evidence of the white noise pattern of the 

residuals. 
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The overall steps of finding a model to fit can 

demonstrated in the following 12 steps which are as 

below. 

 

Step 1: Recognize the time series pattern of the data.  

 

Step 2: Assess the relationship among the key 

variables. 

 

Step 3: Detrend and standardize each key variable. 

 

Step 4: Find the optimum lag period of the 

VARMAX model having the lowest BIC.  

 

Step 5: Find the set of response variable and the set 

of predictors for the VARMAX model having the highest 

adjusted R-square.  

 

Step 6: Check all of the variables have significant 

contribution in prediction using Granger’s Individual 

Causality Tests. 

 

Step 7: Generate all possible combinations of the set 

of predictors lower than or equal to the optimum lag.  
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Step 8: Generate all possible combination of ARIMA 

(p, r, q) (or SARIMA, etc) for all possible combination 

of lower than or equal to the optimum lag. 

 

Step 9: Find the ARIMA having the lowest BIC for 

each of the set of the combination of predictors. 

 

Step 10: Find the final ARIMA model which has the 

grand lowest BIC of the lower BIC ARIMA models.  

 

Step 11: Check the Auto Correlation Function Plot, 

the Spectrum plot, Residual plot of the residuals are 

similar to those of the white noise.  

 

Step 12: Check the Moving Variance for various 

(time) intervals to identify the smallest set of time points 

that contribute the highest variation.  

 

 

3. Data Structure and Pattern Recognition 

 

Data of Daily Opening, Closing, Higher and Lower S & 

P 500 Index Stock Prices from January 2, 2004 to April 

20, 2018 have been collected from the public data hub 

(addressed as https://datahub.io/core/finance-

https://datahub.io/core/finance-vix#readme
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vix#readme[1]). There are 3600 time points. From the 

summary of the data (Appendix: Table A1), each of the 

four variables’, of VIX opening price (vo), VIX closing 

price (vc), VIX high price (vh), VIX low price (vl), 

values range from 8 to 90 and have locations around 19. 

They have linear pairwise-relation (Figure A1) and 

roughly similar shapes over time (Figure A2).  

 

Now, to select first the optimum lag and secondly the 

most reliable response variable and the set of best 

predictors, several Vector Auto Regressive Models 

(ARIMAX) having various lags ranging from 1 to 13 

have been constructed. For lag period 3, the VARMAX 

model gives the lowest BIC (-26581) and the VARMAX 

(x, p = 3) model gives the highest adjusted R-square 

(0.9898) for the response variable VIX opening price 

(vo) (Table A2). So, VIX opening price is the best 

response variable out of the four available variables. 

From the related correlation matrix of the residuals (from 

Table A3) for the VARMAX (x, p = 3) model, the 

residuals for variable vo has moderate linear relationship 

with those for other predictors. However, from the 

individual Granger’s causality test also shows that each 

of the variables has significant contribution in prediction 

using the VARMAX model (displayed in Table A4). 

https://datahub.io/core/finance-vix#readme
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12 possible combinations of the set of predictors and the 

subset of the predictors have been considered for various 

lags lower than or equal to the optimum lag obtained 

(from the optimum VARMAX model) for the selected 

response variable. Those combinations are addressed 

below. Here, as for example vc_1 means the predictor vc 

with lag 1. T and T2 are the two new predictors to see 

whether time and time-square have any effect in 

prediction.  

 
X1 = cbind(vc_1,vc_2,vc_3,vh_1,vh_2,vh_3,vl_1,vl_2,vl_3,T,T2) 

X3 = cbind(vc_1,vc_2,vh_1,vh_2,vl_1,vl_2,T,T2) 

X4 = cbind(vc_1,vh_1,vl_1,T,T2) 

X5 = cbind(vc_1,vh_1,vl_1) 

X6 = cbind(vc_1,vc_2,vc_3,vh_1,vh_2,vh_3,vl_1,vl_2,vl_3) 

X7 = cbind(vc_1,vc_2,vh_1,vh_2,vl_1,vl_2) 

X8 = cbind(vc_1,vh_1) 

X9 = cbind(vc_1,vl_1) 

X10 = cbind(vl_1,vh_1) 

X11 = cbind(vc_1) 

X12 = cbind(vl_1) 

X13 = cbind(vh_1). 

 

The following 42 possible combination of ARIMA (p, r, 

q) [for different combination of p, r, q] have been 

considered for lag 3 (p = 3) of the lower than or equal to 
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the optimum lag obtained (from the optimum VARMAX 

model).  

 
m1 = arima(vo, xreg=X1, order=c(1,0,1))#ARIMA(1,0,1) 

m2 = arima(vo, xreg=X1, order=c(0,0,1))#ARIMA(0,0,1) 

m3 = arima(vo, xreg=X1, order=c(1,0,0))#ARIMA(1,0,0) 

m4 = arima(vo, xreg=X1, order=c(1,1,1))#ARIMA(1,1,1) 

m5 = arima(vo, xreg=X1, order=c(2,0,2))#ARIMA(2,0,2) 

m6 = arima(vo, xreg=X1, order=c(0,2,2))#ARIMA(0,2,2) 

m7 = arima(vo, xreg=X1, order=c(2,2,0))#ARIMA(2,2,0) 

m8 = arima(vo, xreg=X1, order=c(2,1,2))#ARIMA(2,1,2) 

m9 = arima(vo, xreg=X1, order=c(2,2,1))#ARIMA(2,1,3) 

m10 = arima(vo, xreg=X1, order=c(1,2,2))#ARIMA(1,2,2) 

m11 = arima(vo, xreg=X1, order=c(1,2,2))#ARIMA(1,2,2) 

m12 = arima(vo, xreg=X1, order=c(2,2,2))#ARIMA(2,2,2) 

m13 = arima(vo, xreg=X1, order=c(3,0,0))#ARIMA(3,0,0) 

m14 = arima(vo, xreg=X1, order=c(0,3,0))#ARIMA(0,3,0) 

m15 = arima(vo, xreg=X1, order=c(0,0,3))#ARIMA(0,0,3) 

m16 = arima(vo, xreg=X1, order=c(3,0,1))#ARIMA(3,0,1) 

m17 = arima(vo, xreg=X1, order=c(3,1,0))#ARIMA(3,1,0) 

m18 = arima(vo, xreg=X1, order=c(1,3,0))#ARIMA(1,3,0) 

m19 = arima(vo, xreg=X1, order=c(0,3,1))#ARIMA(0,3,1) 

m20 = arima(vo, xreg=X1, order=c(1,0,3))#ARIMA(1,0,3) 

m21 = arima(vo, xreg=X1, order=c(0,1,3))#ARIMA(0,1,3) 

m21 = arima(vo, xreg=X1, order=c(3,0,2))#ARIMA(3,0,2) 

m22 = arima(vo, xreg=X1, order=c(3,2,0))#ARIMA(3,2,0) 

m23 = arima(vo, xreg=X1, order=c(2,3,0))#ARIMA(2,3,0) 

m24 = arima(vo, xreg=X1, order=c(0,3,2))#ARIMA(0,3,2) 

m25 = arima(vo, xreg=X1, order=c(2,0,3))#ARIMA(2,0,3) 
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m26 = arima(vo, xreg=X1, order=c(0,2,3))#ARIMA(0,2,3) 

m27 = arima(vo, xreg=X1, order=c(3,1,2))#ARIMA(3,1,2) 

m28 = arima(vo, xreg=X1, order=c(3,2,1))#ARIMA(3,2,1) 

m29 = arima(vo, xreg=X1, order=c(2,3,1))#ARIMA(2,3,1) 

m30 = arima(vo, xreg=X1, order=c(1,3,2))#ARIMA(1,3,2) 

m31 = arima(vo, xreg=X1, order=c(2,1,3))#ARIMA(2,1,3) 

m32 = arima(vo, xreg=X1, order=c(1,2,3))#ARIMA(1,2,3) 

m33 = arima(vo, xreg=X1, order=c(3,0,3))#ARIMA(3,0,3) 

m34 = arima(vo, xreg=X1, order=c(3,3,0))#ARIMA(3,3,0) 

m35 = arima(vo, xreg=X1, order=c(0,3,3))#ARIMA(0,3,3) 

m36= arima(vo, xreg=X1, order=c(1,3,3))#ARIMA(1,3,3) 

m37 = arima(vo, xreg=X1, order=c(3,1,3))#ARIMA(3,1,3) 

m38 = arima(vo, xreg=X1, order=c(3,3,1))#ARIMA(3,3,1) 

m39 = arima(vo, xreg=X1, order=c(3,3,2))#ARIMA(3,3,2) 

m40 = arima(vo, xreg=X1, order=c(3,2,3))#ARIMA(3,2,3) 

m41 = arima(vo, xreg=X1, order=c(3,3,2))#ARIMA(3,3,2) 

m42 = arima(vo, xreg=X1, order=c(3,3,3))#ARIMA(3,3,3) 

 

For each of the set of the combination (from X1 to X13) 

of predictors, the 42 ARIMA models have been 

constructed. The BIC for each of the 42 ARIMA model 

have been found and compared among themselves (42 

models) to figure out which ARIMA model gives the 

lowest BIC for a specific combination of any of the X1 

to X13 set of predictors. This process has been repeated 

for all possible combination of the set of predictors. Out 

of 504 (= 42*12) ARIMA models, 12 ARIMA models 
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with the corresponding lowest BIC have been found 

(from Table A5). These are as follows. 

 
arima(vo, xreg=X1, order=c(1,0,3))#ARIMA(1,0,3) with BIC -6197, 

arima(vo, xreg=X3, order=c(1,0,1))#ARIMA(1,0,1) with BIC -6228, 

arima(vo, xreg=X4, order=c(1,0,1))#ARIMA(1,0,1) with BIC -6238, 

arima(vo, xreg=X5, order=c(1,0,1))#ARIMA(1,0,1) with BIC -6245, 

arima(vo, xreg=X6, order=c(1,0,3))#ARIMA(1,0,3) with BIC -6222, 

arima(vo, xreg=X7, order=c(1,0,1))#ARIMA(1,0,1) with BIC -6244, 

arima(vo, xreg=X8, order=c(1,0,1))#ARIMA(1,0,1) with BIC -6146, 

arima(vo, xreg=X9, order=c(1,0,1))#ARIMA(1,0,1) with BIC -6262, 

arima(vo, xreg=X10, order=c(1,0,1))#ARIMA(1,0,1) with BIC -4573, 

arima(vo, xreg=X11, order=c(1,0,1))#ARIMA(1,0,1) with BIC -6153, 

arima(vo, xreg=X12, order=c(1,0,1)#ARIMA(1,0,1) with BIC -3734, 

arima(vo, xreg=X13, order=c(2,0,2)#ARIMA(2,0,2) with BIC -3885, 
 

Out of these 12 lower BIC ARIMA models, arima(vo, 

xreg=X9 = cbind(vc_1, vl_1), 

order=c(1,0,1))#ARIMA(1,0,1) has the lowest BIC -

6262. This is the ARIMA (1, 0, 1) model with the 

predictors VIX Closing Price (vc) for lag 1 and VIX Low 

Price for lag 1. The mathematical form of the ARIMA 

(1, 0, 1) model for the aforesaid predictors for the 

response VIX Opening Price (vo) is  

 

VIXOpen(t) = 𝛽0 + 𝛽𝑐VIXClose (t-1) + 

𝛽𝑙VIXLow (t-1) + Noise, 

 



15 
 

where, Noise = ARIMA (1,0,1) Colored Noise = U(t) = 

𝛼𝑈(𝑡 − 1) +  𝜃1𝑤(𝑡) +  𝜃2𝑤(𝑡 − 1). The predicted 

ARIMA (1, 0, 1) model is  

 

vo(t) = 0.86 vc(t-1) + 0.14 vl(t-1) + 0.75 u(t-1) + 𝜃1 

𝑤(𝑡) – 0.83 𝑤(𝑡 − 1), 

 

where, 𝜃1< √0.01013. Here, u(t-1) is the colored noise 

for lag 1 and w(t) and w(t-1) are the white noises for no 

lag and lag 1 respectively.  

 

The auto correlation function of the residuals obtained 

from the difference of the data and the fitted ARMA 

(1,1) model has been found diminishing as lag increase 

(in Figure A3). Thais is a sign of the residuals that are 

white noise means the fitted model is a good fit. The 

spectrum plot of the residuals also shows that they have 

uniform spikes except in the frequency at 0.32 and 0.48 

(observed from Figure A5). There is a cycle for every 3 

(= 1/0.32) days and a moderate cycle for every 2 (=1/ 

0.48) days in the market. 1595, 1596 and 1597 are the 

time points where the variance is the highest and money 

makers to know these time points ahead of the turmoil or 

volatility (Figure A9 to Figure A14).  
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Conclusion 

 

If we have the same data frame for the next 14 years in 

future, the predicted model for this data set will generate 

a time series graph (Figure A7) which is similar to that 

of the original data set for past 14 years (Figure A6). So, 

the predicted model seems to be a good fit to represent 

the original time series data. A quick step by step 

approach of finding a proper time series model that uses 

Moving Variance Method has been addressed here.   
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APPENDIX 

 

Table A1: Summary of Data 

 

time           VIXOpen         VIXHigh          VIXLow         

VIXClose     

 Min.   :   1.0   Min.   : 9.01   Min.   : 9.31   Min.   : 8.56   

Min.   : 9.14   

 1st Qu.: 900.8   1st Qu.:13.07   1st Qu.:13.53   1st Qu.:

12.61   1st Qu.:12.98   

 Median :1800.5   Median :15.88   Median :16.55   Med

ian :15.22   Median :15.77   

 Mean   :1800.5   Mean   :18.62   Mean   :19.46   Mean   

:17.77   Mean   :18.51   

 3rd Qu.:2700.2   3rd Qu.:21.18   3rd Qu.:22.21   3rd Q

u.:20.23   3rd Qu.:21.04   

 Max.   :3600.0   Max.   :80.74   Max.   :89.53   Max.   :

72.76   Max.   :80.86  
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Figure A1: Scatter Plot 

 
Figure A2: Time Series Plot 
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Table A2: BIC of 11 Vector Auto Regressive Models 

(VARS (x, p)) have been found for p = lags = 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 11 

  

 

Depe

ndent 

Varia

ble 

p=

1 

2 3 4 5 6 7 8 9 10 p=

11 

vo   𝟎. 𝟗𝟖𝟗𝟖         

vc   0.96         

vl   0.98

27 

        

vh   0.97         

BIC -

26

39

7 

-

26

52

6 

-

265

81 

-

26

56

5 

-

26

54

1 

-

26

45

7 

-

26

38

8 

-

26

33

2 

-

26

26

4 

-

26

19

6 

-

26

08

5 

 

 

 

 

 



20 
 

Table A3: Correlation Matrix of residuals from 

VARMAX model (x, p = 3) 

Correlation matrix of residuals: 

  vo     vc     vh     vl 

vo 1.0000 0.5355 0.6487 0.6832 

vc 0.5355 1.0000 0.8559 0.8145 

vh 0.6487 0.8559 1.0000 0.7159 

vl 0.6832 0.8145 0.7159 1.0000 

 

Table A4: Granger’s Tests 

Granger test 

for the 

predictor 

p-value Decision 

causality(vR, 

cause = 

"vo")$Granger 

7.42e-09 vo has 

significant role 

in prediction 

causality(vR, 

cause = 

"vc")$Granger 

2.2e-16 vc has 

significant role 

in prediction 

causality(vR, 

cause = 

"vh")$Granger 

2.2e-16 vh has 

significant role 

in prediction 

causality(vR, 

cause = 

"vl")$Granger 

2.2e-16 vl has 

significant role 

in prediction 
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Table A5: BICs of 42*12 = 504 Time Series Models 
 

 X1 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 

arima(vo, xreg, 

order=c(1,0,1))#ARIMA(1,0,1) 

 -

6228 

-

6238 

-

6254 

 -

6244 

-

6146 

-

6262 

-

4573 

-

6153 

-

3734 

 

arima(vo, xreg, 

order=c(0,0,1))#ARIMA(0,0,1) 

            

arima(vo, xreg, 

order=c(1,0,0))#ARIMA(1,0,0) 

            

arima(vo, xreg, 

order=c(1,1,1))#ARIMA(1,1,1) 

            

arima(vo, xreg, 

order=c(2,0,2))#ARIMA(2,0,2) 

           -

3885 

arima(vo, xreg, 

order=c(0,2,2))#ARIMA(0,2,2) 

            

arima(vo, xreg, 

order=c(2,2,0))#ARIMA(2,2,0) 

            

arima(vo, xreg, 

order=c(2,1,2))#ARIMA(2,1,2) 

            

arima(vo, xreg, 

order=c(2,2,1))#ARIMA(2,1,3) 

            

arima(vo, xreg, 

order=c(1,2,2))#ARIMA(1,2,2) 

            

arima(vo, xreg, 

order=c(1,2,2))#ARIMA(1,2,2) 

            

arima(vo, xreg, 

order=c(2,2,2))#ARIMA(2,2,2) 

            

arima(vo, xreg, 

order=c(3,0,0))#ARIMA(3,0,0) 

            

arima(vo, xreg, 

order=c(0,3,0))#ARIMA(0,3,0) 

            

arima(vo, xreg, 

order=c(0,0,3))#ARIMA(0,0,3) 

            

arima(vo, xreg, 

order=c(3,0,1))#ARIMA(3,0,1) 

            

arima(vo, xreg, 

order=c(3,1,0))#ARIMA(3,1,0) 

            

arima(vo, xreg, 

order=c(1,3,0))#ARIMA(1,3,0) 

            

arima(vo, xreg, 

order=c(0,3,1))#ARIMA(0,3,1) 

            

arima(vo, xreg, 

order=c(1,0,3))#ARIMA(1,0,3) 

-

6197 

 

 

  -

6222 

       

arima(vo, xreg, 

order=c(0,1,3))#ARIMA(0,1,3) 

            

arima(vo, xreg, 

order=c(3,0,2))#ARIMA(3,0,2) 

            

arima(vo, xreg, 

order=c(3,2,0))#ARIMA(3,2,0) 

            

arima(vo, xreg, 

order=c(2,3,0))#ARIMA(2,3,0) 
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arima(vo, xreg, 

order=c(0,3,2))#ARIMA(0,3,2) 

            

arima(vo, xreg, 

order=c(2,0,3))#ARIMA(2,0,3) 

            

arima(vo, xreg, 

order=c(0,2,3))#ARIMA(0,2,3) 

            

arima(vo, xreg, 

order=c(3,1,2))#ARIMA(3,1,2) 

            

arima(vo, xreg, 

order=c(3,2,1))#ARIMA(3,2,1) 

            

arima(vo, xreg, 

order=c(2,3,1))#ARIMA(2,3,1) 

            

arima(vo, xreg, 

order=c(1,3,2))#ARIMA(1,3,2) 

            

arima(vo, xreg, 

order=c(2,1,3))#ARIMA(2,1,3) 
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Figure A3: Auto Correlation Function of the 

residuals 
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Figure A4: Spectrum of the residuals  

 
 

Highest spike at omega = 0.32. One cycle in every 3 

days. 

 

Figure A5: Residual Plot 
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Figure A6: Time Series Plot of the Daily Opening 

Price of S&P 500 Stock Index Option Prices from 

January 2, 2004 to April 20, 2018  

 
Figure A7: Predicted Time Series Plot of the Daily 

Opening Price of S&P 500 Stock Index Option Prices 
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Figure A8: 3-point Moving Average Plot 

 
 

  
 

Figure A9: 3-point Moving Variance Plot 
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Figure A10: 5-point Moving Variance Plot 

 
 

Figure A11: 21-point Moving Variance Plot 
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Figure A12: 201-point Moving Variance Plot 

 
Figure A13: 1001-point Moving Variance Plot 
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Figure A14: Auto Correlation Function Plot of First 

Order Difference vo 

 
Figure A15: Auto Correlation Function Residual 
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