Scalable Probabilistic PCA

PCA

Probabilisti PCA

Results

Scalable and flexible probabilistic PCA for large-scale genetic variation data

Sriram Sankararaman

Department of Computer Science Department of Human Genetics UCLA

The genomic revolution Scalable Probabilistic PCA Cost per Genome *biobank** aenomes Improving the health of future generations

Challenge: scalable methods to analyze and visualize this data

	Genetic data		
Scalable Probabilistic	Individual 2		
PCA	Individual 1 Individual 3		
PCA			
Probabilistic PCA	· · · · · · · · · · · · · · · · · · ·		
Results	Position along Genome		
	Position along Genome		
	Individual 2 Genotype 2		
	Individual 1 Individual 3 Genotype 1 Genotype 3		
	SNPS AA AG AG SNPS 0 1 1 CT CT CC SNPs 1 1 2		

PCA on genetic data

Scalable Probabilistic PCA

PCA

Probabilisti PCA

Results

Visualize genetic structure

Novembre et al. Nature 2008

PCA

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

Given N genotype vectors over M SNPs $\boldsymbol{x}_n \in \mathbb{R}^M, n \in \{1, \dots, N\}$ and $K \leq M$. $\boldsymbol{x}_n \approx \boldsymbol{w}_1 \boldsymbol{z}_{n,1} + \dots + \boldsymbol{w}_K \boldsymbol{z}_{n,K}$ $= [\boldsymbol{w}_1 \dots \boldsymbol{w}_K] \begin{bmatrix} \boldsymbol{z}_{n,1} \\ \vdots \\ \boldsymbol{z}_{n,K} \end{bmatrix}$ $= \boldsymbol{W} \boldsymbol{z}_n$

- PCA Constraint: columns of W are orthonormal.
- The PCA solution \$\hat{W} = U_K\$ where \$U_K\$ contains the top \$K\$ eigenvectors of the sample covariance matrix.

Challenges with PCA

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

Computational

- Compute all eigenvalue, eigenvectors.
 - Singular-Value Decomposition (SVD):

 $\mathcal{O}(MN\min(M,N)) \approx \mathcal{O}(MN^2)$

- Infeasible for genetic datasets (large number of SNPs M or individuals N).
- Recent Randomized approximation algorithms

Statistical

- Missing genotypes.
- Correlation among SNPs.

Halko et al. 2009, Galinskey et al. 2016

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

$$\boldsymbol{z}_n \stackrel{iid}{\sim} \mathcal{N}(0, \boldsymbol{I}_K)$$
$$p(\boldsymbol{x}_n | \boldsymbol{z}_n, \boldsymbol{W}, \sigma^2) = \mathcal{N}(\boldsymbol{W} \boldsymbol{z}_n, \sigma^2 \boldsymbol{I}_M)$$

Log likelihood

Model

$$\mathcal{LL}(\boldsymbol{W}, \sigma^2) \equiv \log P(\boldsymbol{X}|\boldsymbol{W}, \sigma^2) = \log \prod_{n=1}^N p(\boldsymbol{x}_n, \boldsymbol{z}_n | \boldsymbol{W}, \sigma^2)$$

The maximum likelihood estimator is equivalent to PCA.

Roweis 1999, Tipping and Bishop 1999, Engelhardt and Stephens 2010

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

EM algorithm

• E-step:

$$\boldsymbol{Z} = (\boldsymbol{W}^{\mathrm{T}}\boldsymbol{W})^{-1}\boldsymbol{W}^{\mathrm{T}}\boldsymbol{X}$$

• M-step:

$$\boldsymbol{W} = \boldsymbol{X} \boldsymbol{Z}^{\mathrm{T}} {(\boldsymbol{Z} \boldsymbol{Z}^{\mathrm{T}})}^{-1}$$

• Assume: $\sigma^2 \rightarrow 0$

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

EM algorithm: computational complexity

• E-step:

$$\boldsymbol{Z} = \underbrace{\left(\boldsymbol{W}^{\mathrm{T}}\boldsymbol{W}\right)}_{K \times K}^{-1} \underbrace{\boldsymbol{W}^{\mathrm{T}}}_{K \times M} \underbrace{\boldsymbol{X}}_{M \times N}$$

- $\mathcal{O}(NMK)$
- M-step:

$$\boldsymbol{W} = \underbrace{\boldsymbol{X}}_{M \times N} \underbrace{\boldsymbol{Z}}_{N \times K}^{\mathrm{T}} \underbrace{(\boldsymbol{Z} \boldsymbol{Z}^{\mathrm{T}})}_{K \times K}^{-1}$$

 $\mathcal{O}(NMK)$

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

EM algorithm: computational complexity

- Run for I iterations with each iteration costing $\mathcal{O}(NMK)$.
- For small K, leads to a linear-time algorithm.

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

EM algorithm: computational complexity

- Run for I iterations with each iteration costing $\mathcal{O}(NMK)$.
- For small K, leads to a linear-time algorithm.
- Ignores the special structure of the genotype matrix X.

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

EM algorithm: computational complexity

Each E and M step, perform the following operations K times:

$$c = Xb$$

- \boldsymbol{X} is a fixed $M \times N$ matrix of genotypes.
- **b** is a real-valued vector that could potentially change each iteration.
- Naive multiplication takes $\mathcal{O}(NM)$.

Liberty and Zucker 2009

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

EM algorithm: computational complexity

Each E and M step, perform the following operations K times:

$$c = Xb$$

- X is a fixed $M \times N$ matrix of genotypes.
- **b** is a real-valued vector that could potentially change each iteration.
- Naive multiplication takes $\mathcal{O}(NM)$.
- For a genotype matrix, can we do some pre-processing so that *Xb* can be computed more efficiently ?

Liberty and Zucker 2009

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

EM algorithm: computational complexity

Each E and M step, perform the following operations K times:

$$c = Xb$$

- X is a fixed $M \times N$ matrix of genotypes.
- **b** is a real-valued vector that could potentially change each iteration.
- Naive multiplication takes $\mathcal{O}(NM)$.
- For a genotype matrix, can we do some pre-processing so that *Xb* can be computed more efficiently ?
- Yes! For a matrix with binary entries: $\mathcal{O}(\frac{MN}{\log_2(N)})$.

Liberty and Zucker 2009

EM with the Mailman algorithm

PCA

Probabilistic PCA

Results

- Entries in genotype matrix take one of three values: $\{0, 1, 2\}.$
- Using the Mailman algorithm, per-iteration time complexity of EM for genotype matrix: \$\mathcal{O}(\frac{MNK}{\log_2(N)})\$.

Sub-linear time algorithm for computing PCA

Simulations

Scalable Probabilistic PCA

Accuracy

50,000 SNPs, 10,000 individuals

F_{st}	MEV	
	K = 5	K = 10
0.001	0.987	1.000
0.002	0.999	1.000
0.003	0.999	1.000
0.004	0.999	1.000
0.005	1.000	1.000
0.006	1.000	1.000
0.007	1.000	1.000
0.008	1.000	1.000
0.009	1.000	1.000
0.010	1.000	1.000

Probabilis PCA

Results

Simulations

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

Efficiency

$$M = 100,000$$
 SNPs, $K = 5$, $F_{ST} = 0.01$

Application to 1000 Genomes data

Other advantages of Probabilistic PCA

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

Can naturally handle missing data

- E-step involves inferring hidden variables Z as well as hidden (missing observations).
- Can handle missing data efficiently.

Can use model selection to infer K.

- Choose K to maximize the marginal likelihood $P(\mathbf{X}|K)$.
- Use cross-validation and pick ${\cal K}$ that maximizes likelihood on held out data.

Open questions

Scalable Probabilistic PCA

PCA

Probabilisti PCA

Results

- Modeling correlations .
- Beyond Gaussian outputs

Baran et al. 2013, Wen and Stephens 2012 Collins et al. 2002

Summary

Scalable Probabilistic PCA

PCA

Probabilisti PCA

Results

- PCA can be interpreted as a latent variable model with continuous latent variable.
 - Probabilistic interpretation useful to generalize PCA.
 - Leads to efficient inference.
- Fast matrix-vector multiplication for genotype data more generally applicable and can lead to sub-linear time algorithms.

Acknowledgments

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

- Aman Agrawal
- Minh Le
- Eran Halperin

Email sriram@cs.ucla.edu