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The genomic revolution

Challenge: scalable methods to analyze and visualize this data
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Genetic data
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PCA on genetic data
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PCA on genetic data

Visualize genetic structure

Novembre et al. Nature 2008
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PCA

Given N genotype vectors over M SNPs
xn ∈ RM , n ∈ {1, . . . , N} and K ≤M .

xn ≈ w1zn,1 + . . .+wKzn,K

= [w1 . . .wK ]

 zn,1
...
zn,K


= Wzn

• PCA Constraint: columns of W are orthonormal.

• The PCA solution Ŵ = UK where UK contains the top
K eigenvectors of the sample covariance matrix.
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Challenges with PCA

Computational

• Compute all eigenvalue, eigenvectors.
• Singular-Value Decomposition (SVD):

O(MN min(M,N)) ≈ O(MN2)

• Infeasible for genetic datasets (large number of SNPs M or
individuals N).

• Recent Randomized approximation algorithms

Statistical

• Missing genotypes.

• Correlation among SNPs.

Halko et al. 2009, Galinskey et al. 2016
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Probabilistic PCA

Model

zn
iid∼ N (0, IK)

p(xn|zn,W , σ2) = N (Wzn, σ
2IM )

Log likelihood

LL(W , σ2) ≡ logP (X|W , σ2) = log

N∏
n=1

p(xn, zn|W , σ2)

The maximum likelihood estimator is equivalent to PCA.

Roweis 1999, Tipping and Bishop 1999, Engelhardt and Stephens 2010
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Probabilistic PCA

EM algorithm

• E-step:

Z = (WTW )
−1

WTX

• M-step:

W = XZT(ZZT)
−1

• Assume: σ2 → 0
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Probabilistic PCA

EM algorithm: computational complexity

• E-step:

Z = (WTW )︸ ︷︷ ︸
K×K

−1
WT︸︷︷︸
K×M

X︸︷︷︸
M×N

O(NMK)

• M-step:

W = X︸︷︷︸
M×N

ZT︸︷︷︸
N×K

(ZZT)︸ ︷︷ ︸
K×K

−1

O(NMK)
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Probabilistic PCA

EM algorithm: computational complexity

• Run for I iterations with each iteration costing O(NMK).

• For small K, leads to a linear-time algorithm.

• Ignores the special structure of the genotype matrix X.
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Probabilistic PCA

EM algorithm: computational complexity

• Run for I iterations with each iteration costing O(NMK).

• For small K, leads to a linear-time algorithm.

• Ignores the special structure of the genotype matrix X.
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Probabilistic PCA

EM algorithm: computational complexity

Each E and M step, perform the following operations K times:

c = Xb

• X is a fixed M ×N matrix of genotypes.

• b is a real-valued vector that could potentially change
each iteration.

• Naive multiplication takes O(NM).

• For a genotype matrix, can we do some pre-processing so
that Xb can be computed more efficiently ?

• Yes! For a matrix with binary entries: O( MN
log2(N)).

Liberty and Zucker 2009
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Probabilistic PCA
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EM with the Mailman algorithm

• Entries in genotype matrix take one of three values:
{0, 1, 2}.

• Using the Mailman algorithm, per-iteration time
complexity of EM for genotype matrix: O( MNK

log3(N)).

Sub-linear time algorithm for computing PCA
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Simulations

Accuracy

50, 000 SNPs, 10, 000 individuals

Fst MEV

K = 5 K = 10

0.001 0.987 1.000
0.002 0.999 1.000
0.003 0.999 1.000
0.004 0.999 1.000
0.005 1.000 1.000
0.006 1.000 1.000
0.007 1.000 1.000
0.008 1.000 1.000
0.009 1.000 1.000
0.010 1.000 1.000
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Simulations

Efficiency

M = 100, 000 SNPs, K = 5, FST = 0.01
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Application to 1000 Genomes data
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Other advantages of Probabilistic PCA

Can naturally handle missing data

• E-step involves inferring hidden variables Z as well as
hidden (missing observations).

• Can handle missing data efficiently.

Can use model selection to infer K.

• Choose K to maximize the marginal likelihood P (X|K).

• Use cross-validation and pick K that maximizes likelihood
on held out data.
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Open questions

• Modeling correlations .

• Beyond Gaussian outputs

Baran et al. 2013, Wen and Stephens 2012
Collins et al. 2002
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Summary

• PCA can be interpreted as a latent variable model with
continuous latent variable.

• Probabilistic interpretation useful to generalize PCA.
• Leads to efficient inference.

• Fast matrix-vector multiplication for genotype data more
generally applicable and can lead to sub-linear time
algorithms.
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