Scalable and flexible probabilistic PCA for large-scale genetic variation data

Sriram Sankararaman
Department of Computer Science
Department of Human Genetics
UCLA

The genomic revolution

Scalable Probabilistic PCA

PCA
Probabilistic PCA

Results

biobank ${ }^{\prime \prime}$
 Improving the health of future generations

Challenge: scalable methods to analyze and visualize this data

Genetic data

PCA on genetic data

Scalable

Probabilistic PCA

PCA
Probabilistic PCA

Genotypes

SNPs $\left\lvert\,$| 1 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 1 | 1 |
| 2 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 2 | 2 |
| 2 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 2 | 2 | 1 | 1 | 0 |$\xrightarrow{\text { PCA }} 0.7\right.$ 0.3-0.1-0.4-0.5

PCA on genetic data

Scalable
Probabilistic PCA

Visualize genetic structure

Novembre et al. Nature 2008

PCA

Scalable Probabilistic PCA

Given N genotype vectors over M SNPs $\boldsymbol{x}_{n} \in \mathbb{R}^{M}, n \in\{1, \ldots, N\}$ and $K \leq M$.

$$
\begin{aligned}
\boldsymbol{x}_{n} & \approx \boldsymbol{w}_{1} z_{n, 1}+\ldots+\boldsymbol{w}_{K} z_{n, K} \\
& =\left[\boldsymbol{w}_{1} \ldots \boldsymbol{w}_{K}\right]\left[\begin{array}{l}
z_{n, 1} \\
\vdots \\
z_{n, K}
\end{array}\right] \\
& =\boldsymbol{W} \boldsymbol{z}_{n}
\end{aligned}
$$

- PCA Constraint: columns of \boldsymbol{W} are orthonormal.
- The PCA solution $\widehat{\boldsymbol{W}}=\boldsymbol{U}_{K}$ where \boldsymbol{U}_{K} contains the top K eigenvectors of the sample covariance matrix.

Challenges with PCA

Computational

- Compute all eigenvalue, eigenvectors.
- Singular-Value Decomposition (SVD):

$$
\mathcal{O}(M N \min (M, N)) \approx \mathcal{O}\left(M N^{2}\right)
$$

- Infeasible for genetic datasets (large number of SNPs M or individuals N).
- Recent Randomized approximation algorithms

Statistical

- Missing genotypes.
- Correlation among SNPs.

Halko et al. 2009, Galinskey et al. 2016

Probabilistic PCA

Scalable Probabilistic PCA

Model

$$
\begin{aligned}
& \boldsymbol{z}_{n} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \boldsymbol{I}_{K}\right) \\
& p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \boldsymbol{W}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{W} \boldsymbol{z}_{n}, \sigma^{2} \boldsymbol{I}_{M}\right)
\end{aligned}
$$

Log likelihood

$$
\mathcal{L L}\left(\boldsymbol{W}, \sigma^{2}\right) \equiv \log P\left(\boldsymbol{X} \mid \boldsymbol{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{W}, \sigma^{2}\right)
$$

The maximum likelihood estimator is equivalent to PCA.

Probabilistic PCA

EM algorithm

- E-step:

$$
\boldsymbol{Z}=\left(\boldsymbol{W}^{\mathrm{T}} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{\mathrm{T}} \boldsymbol{X}
$$

- M-step:

$$
\boldsymbol{W}=\boldsymbol{X} \boldsymbol{Z}^{\mathrm{T}}\left(\boldsymbol{Z} \boldsymbol{Z}^{\mathrm{T}}\right)^{-1}
$$

- Assume: $\sigma^{2} \rightarrow 0$

Probabilistic PCA

Scalable
Probabilistic PCA

EM algorithm: computational complexity

- E-step:

$$
\boldsymbol{Z}=\underbrace{\left(\boldsymbol{W}^{\mathrm{T}} \boldsymbol{W}\right)^{-1}}_{K \times K} \underbrace{\boldsymbol{\boldsymbol { W } ^ { \mathrm { T } }}}_{K \times M} \underbrace{\boldsymbol{X}}_{M \times N}
$$

$\mathcal{O}(N M K)$

- M-step:

$$
\boldsymbol{W}=\underbrace{\boldsymbol{X}}_{M \times N} \underbrace{\boldsymbol{Z}^{\mathrm{T}}}_{N \times K} \underbrace{\left(\boldsymbol{Z} \boldsymbol{Z}^{\mathrm{T}}\right)^{-1}}_{K \times K}
$$

$\mathcal{O}(N M K)$

Probabilistic PCA

Scalable Probabilistic PCA

PCA

Probabilistic PCA

EM algorithm: computational complexity

- Run for I iterations with each iteration costing $\mathcal{O}(N M K)$.
- For small K, leads to a linear-time algorithm.

Probabilistic PCA

Scalable Probabilistic PCA

PCA

Probabilistic PCA

EM algorithm: computational complexity

- Run for I iterations with each iteration costing $\mathcal{O}(N M K)$.
- For small K, leads to a linear-time algorithm.
- Ignores the special structure of the genotype matrix \boldsymbol{X}.

Probabilistic PCA

Scalable
Probabilistic PCA

EM algorithm: computational complexity

Each E and M step, perform the following operations K times:

$$
c=\boldsymbol{X} b
$$

- \boldsymbol{X} is a fixed $M \times N$ matrix of genotypes.
- \boldsymbol{b} is a real-valued vector that could potentially change each iteration.
- Naive multiplication takes $\mathcal{O}(N M)$.

Probabilistic PCA

Scalable Probabilistic PCA

EM algorithm: computational complexity

Each E and M step, perform the following operations K times:

$$
c=X b
$$

- \boldsymbol{X} is a fixed $M \times N$ matrix of genotypes.
- \boldsymbol{b} is a real-valued vector that could potentially change each iteration.
- Naive multiplication takes $\mathcal{O}(N M)$.
- For a genotype matrix, can we do some pre-processing so that $\boldsymbol{X} \boldsymbol{b}$ can be computed more efficiently ?

Liberty and Zucker 2009

Probabilistic PCA

PCA

Probabilistic PCA

EM algorithm: computational complexity

Each E and M step, perform the following operations K times:

$$
c=X b
$$

- \boldsymbol{X} is a fixed $M \times N$ matrix of genotypes.
- \boldsymbol{b} is a real-valued vector that could potentially change each iteration.
- Naive multiplication takes $\mathcal{O}(N M)$.
- For a genotype matrix, can we do some pre-processing so that $\boldsymbol{X} \boldsymbol{b}$ can be computed more efficiently ?
- Yes! For a matrix with binary entries: $\mathcal{O}\left(\frac{M N}{\log _{2}(N)}\right)$.

Liberty and Zucker 2009

EM with the Mailman algorithm

Scalable Probabilistic PCA

PCA

Probabilistic PCA

- Entries in genotype matrix take one of three values: $\{0,1,2\}$.
- Using the Mailman algorithm, per-iteration time complexity of EM for genotype matrix: $\mathcal{O}\left(\frac{M N K}{\log _{3}(N)}\right)$.
Sub-linear time algorithm for computing PCA

Simulations

Scalable
Probabilistic PCA

Accuracy

50,000 SNPs, 10,000 individuals

$F_{\text {st }}$	MEV	
	$K=5$	$K=10$
0.001	0.987	1.000
0.002	0.999	1.000
0.003	0.999	1.000
0.004	0.999	1.000
0.005	1.000	1.000
0.006	1.000	1.000
0.007	1.000	1.000
0.008	1.000	1.000
0.009	1.000	1.000
0.010	1.000	1.000

Simulations

Scalable Probabilistic PCA

PCA

Probabilistic PCA

Results

Efficiency

$$
M=100,000 \text { SNPs, } K=5, F_{S T}=0.01
$$

Application to 1000 Genomes data

Scalable
Probabilistic PCA

Other advantages of Probabilistic PCA

Can naturally handle missing data

- E-step involves inferring hidden variables \boldsymbol{Z} as well as hidden (missing observations).
- Can handle missing data efficiently.

Can use model selection to infer K.

- Choose K to maximize the marginal likelihood $P(\boldsymbol{X} \mid K)$.
- Use cross-validation and pick K that maximizes likelihood on held out data.

Open questions

Scalable Probabilistic PCA

PCA
Probabilistic PCA

Results

- Modeling correlations .
- Beyond Gaussian outputs

Baran et al. 2013, Wen and Stephens 2012 Collins et al. 2002

Summary

PCA

- PCA can be interpreted as a latent variable model with continuous latent variable.
- Probabilistic interpretation useful to generalize PCA.
- Leads to efficient inference.
- Fast matrix-vector multiplication for genotype data more generally applicable and can lead to sub-linear time algorithms.

Acknowledgments

Scalable
Probabilistic PCA

PCA
Probabilistic PCA

Results

- Aman Agrawal
- Minh Le
- Eran Halperin

Email sriram@cs.ucla.edu

