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Introduction

@ Problem: How to perform a large number of tests using method M;
or M> and adjust for multiple testing.

@ When an assumption A is valid M; has more power than M, and
when A does not hold M, reveals to be more powerful than Mj.

@ And also take into account Graphical Network that exists among
entities.

@ Solution: Hybrid-Network assesses Assumption Validity and takes into
account Graphical Network.
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Motivations & Description
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Theorem (Hybrid P-values)

Suppose there are two different procedures My and M that can be used to test the null
hypothesis, say Hy : @ = 0g. Let P1 be the p-value obtained if the method My is used for testing
the null hypothesis Hy, and P, be the p-value if the method M, is used instead. Let P be

defined by
p_ P1, if My
P, if M.

Then P is uniformly distributed under the null hypothesis Hy.
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Motivations & Description

Proof.

Under the null hypothesis (Hp) (of primary interest, gene is expressed say),
both P; and P are uniformly distributed [0; 1].
P(P<p|Ho) = P{(P<p)n[M UMJ|Ho}
= P{(P<p)NM;|Ho} +P{(P<p)nNMy| Ho}
= P(P < p| My, Ho)P(My | Ho)+
P(P < p | Mz, Ho)P(M> | Ho)
= P(P1 < p| Ho)P(M: | Ho)+
P((P2 < p) | Ho)P(Ma | Ho)
= pP(My | Ho) + pP(M- | Ho)
= pP(M1 | Ho) + p(1 — P(My | Ho))
= p.
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Methodology

@ In a spatial normal mixture model,
f(zg) = 71'gofo(zg) + 7Tg1f1(zg)7 (1)
where z; = o1 - Pg) and mgs are gene-specific prior probabilities.
@ The prior probabilities, 7gs, based on gene network, are related to two
latent Markov random fields xs = {xgs; g =1,--- , G}, s = 0,1 by:
eXp(ng) 5
, (2)
exp(xgo) + exp(xg1)
Ty =1 if gene g is expressed and T, = 0 if not expressed.

P(Tg =5)=mgs =

@ The distribution of each spatial latent variable xgs conditional on
X_gs = {Xxs: k # g} depends only on its direct neighbors,

Xgs | x-gs ~ N(— ZX’S’ (3)
Mg I€dg

where J, is the set of indices for the neighbors of gene g, and my is
the corresponding number of neighbors.

University of Texas Rio Grande Valley Symposium on Data Science & Statistics 4 /14



Results: Simulations

@ To compare the Hybrid-Network method with other methods we
conducted simulation studies designed to mimic testing situations
that might arise in real world situations. We conducted standard
two-group comparison studies (treatment vs control), k-group
comparison (ANOVA), and regression analysis.

@ The description of the setup is as follows:

1) There are two groups of sample size varying from 5, 10, 25, 50.

2) The number of genes with the normal distribution, N(u,1), is 30,
= 0 for the null hypothesis and u =1 for the alternative, and the
number of genes with the Log-normal distribution, Log — normal(pu, 1),
with g = 0 in some cases and p =1 in other cases, is 14.

3) A graphical network is built among genes with 212 number of
neighbors.
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Results: Simulations

Table: 2—Group Comparison: Specificities

Sample size (n;) | T-test sp | Rank Sum-test sp | Hybrid-Network-test sp
5 0.571726 0.557244 0.575314
10 0.689223 0.69797 0.716146
25 0.884244 0.918197 0.921273
50 0.9839 0.994575 0.994575

sp = specificity

Table: 3—Group Comparison: Specificities

Sample size (n;)

F-test sp | H-test sp | Hybrid-Network test sp

5 0.579557 | 0.57232 0.585729
10 0.668287 | 0.668287 0.684932
25 0.89141 0.918197 0.929054
50 0.92437 0.9839 0.985663
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Results: Simulations

@ The description of the setup is as follows:

» The sample size is 25 and the cutoff point, 7, is varied.

» The number of genes with the normal distribution , N(y, 1), is 30,
i = 0 for the null hypothesis and . = 1 for the alternative, and the
number of genes with the Log-normal distribution, Log — normal(u, 1),
with = 0 in some cases and u = 1 in other cases, is 14.

» A graphical network is built among genes with 212 number of
neighbors.
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Results: Application to Tumor Data

@ Tumor is cancer disease that occurs in 2 distinct anatomic regions:

@ We use Affymetrix arrays to compare expression across the 2 groups.

@ A graphical network is provided.

@ We develop a Hybrid-Network test procedure using t-test, Rank Sum,
Shapiro-Wilk tests, and CAR (Conditional Autoregressive Priors).

Table: Human Ependymoma Microarray Data

Genes | Grl ‘ Grl [ ] Gr2 ‘ Gr2 | -
AKT1 12.48167 11.75317 cee 10.95536 11.51737
ARHGEF2 14.99632 13.81004 | --- 13.45263 14.02982
ATF2 12.93096 13.14289 cee 13.44182 12.72238
BDNF 3.392317 | 4.542258 s 4.716991 5.738768
BRAF 9.111918 10.3433 cee 10.07682 | 9.107217
CDC25B 10.33114 11.04207 cee 11.7139 11.76408

This shows the human ependymoma expression data: genes as gene annotation, groups (Grl and Gr2)
as sample annotation and real values as gene expression levels.
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Results: Application to Tumor Data
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Results: Application to Tumor Data
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Discussions

@ Assumptions and graphical network profoundly impact the validity of
an analysis.

@ Assumptions are not routinely evaluated in multiple testing
applications (Gene expression data analysis) because they entail
adding new layers of multiplicity.

@ Hybrid-network that incorporates both assumptions and graphical
network shows good performances in simulations and in real data.

@ Writing an R Package that considers assumptions and graphical
network into the analysis of gene expressions data.
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Appendix

model

for (i in{l :N) {
z[i] ~ dnorm(muR][i],tauR[i]) #z-score
muR[i]< —mu[T[i]]
tauR[i]< —tau[TI[i]]
#logistic
pili, 1] < —exp(XL[T)/(exp(XL[])+exp(X2[]))
pili.2] < —exp(X2il)/(exp(XL[)+exp(X2[il))

Tli]~dcat(pi[i,1:2])
T1[i]< —equals(T[i],1)
T2[i]< —equals(T[i],2)

#Random Fields specification
X1[1:N]~car.normal(adj[], weights[],num[],tau[1])
X2[1:N]~car.normal(adj[], weights[],num[],tau[2])

#Weights Specification
for(k in 1:sumNumNeigh){weights[k]< —1}
#Priors specification(precision for MRF)
#Prior: means of normal mixture components
mu[1]~dnorm(0,1.0E-6)
mu[2]~dnorm(0,1.0E-6) #1(0.0,) #add 1(,0.0)?
#Priors:precision /variance of normal mixture component
tau[l]~dgamma(0.1,0.1)
tau[2]~dgamma(0.1,0.1)
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Appendix

source(" http : / /bioconductor.org / biocLite .R")
biocLite("RBGL")
library(" graph”)
myNodesj-c("G1","G2","G3","G4" " G5" " G6" " G7"," G8" " G9" " G10",
"G11","G12","G13"," G14"," G15","G16" " G17"," G18"," G19"," G20",
"G21","G22"," G23"," G24" " G25" " G26" " G27" " G28"," G29"," G30",
"G31","G32","G33","G34","G35","G36"," G37"," G38"," G39"," G40",
"G41" " G42" " G43" " G44")
myEdges< —list(Gl=list(edges=c(" G17","G12"," G9" " G8"," G4")),
G2=list(edges=c(" G14" " G13" " G10"," G7")),
G3=list(edges=c(" G32","G17" " G15" " G11"," G8"," G6")),
G4=list(edges=c(" G33","G32","G17"," G16" " G14" " G12" " G1")),
Gad=list(edges=c(" G41","G32" " G31"," G26"," G25" " G22")))
g< —new("graphNEL" ,nodes=myNodes,edgeL=myEdges, edgemode="directed")
library(" Rgraphviz”)
library(" RBGL")
cc< —connectedComp(g)
colors< —c("gray”,” purple”,” maroon” " maroon2"," orangered”,
"red”, "darkmagenta”,” tomato3”,” tomato4” " olivedrab”,
"blue", "darkgreen”," turquoisel”,” turquoise2” " turquoise3"”,
"yellow”, "violet”," violetred” " violetred1” " violetred2",

" cadetblue”,” cadetbluel”,” cadetblue2” " cadetblue3”, " cadetblue4”,
"burlywood”," burlywoodl"”," burlywood?2" " burlywood3",” burlywood4"
"darkgoldenrod” " darkgoldenrodl”," darkgoldenrod2” " darkgoldenrod3” " darkgoldenrod4”,
"chartreuse”,” chartreusel” " chartreuse2” " chartreuse3”,"” chartreuse4”,
"coral”, "corall”, "coral2",” tomato2” listlen=(cc))
names(colors) < —unlist(cc)
plot(g, nodeAttrs=list(fillcolor=colors))
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