Method Selection and Graphical Network: Applications to Gene Expression Data

Demba Fofana, PhD University of Texas Rio Grande Valley

Introduction

- Problem: How to perform a large number of tests using method M_1 or M_2 and adjust for multiple testing.
- When an assumption A is valid M_1 has more power than M_2 and when A does not hold M_2 reveals to be more powerful than M_1 .
- And also take into account Graphical Network that exists among entities.
- Solution: Hybrid-Network assesses Assumption Validity and takes into account Graphical Network.

Motivations & Description

Theorem (Hybrid P-values)

Suppose there are two different procedures M_1 and M_2 that can be used to test the null hypothesis, say $H_0: \theta = \theta_0$. Let P_1 be the p-value obtained if the method M_1 is used for testing the null hypothesis H_0 , and P_2 be the p-value if the method M_2 is used instead. Let P be defined by

$$P = \begin{cases} P_1, & \text{if } M_1 \\ P_2, & \text{if } M_2. \end{cases}$$

Then P is uniformly distributed under the null hypothesis H_0 .

Motivations & Description

Proof.

Under the null hypothesis (H_0) (of primary interest, gene is expressed say), both P_1 and P_2 are uniformly distributed [0, 1]. $\mathbb{P}(P$ $= \mathbb{P}\{(P < p) \cap M_1 \mid H_0\} + \mathbb{P}\{(P < p) \cap M_2 \mid H_0\}$ $= \mathbb{P}(P$ $\mathbb{P}(P$ $= \mathbb{P}(P_1$ $\mathbb{P}((P_2 < p) \mid H_0)\mathbb{P}(M_2 \mid H_0)$ $= p\mathbb{P}(M_1 | H_0) + p\mathbb{P}(M_2 | H_0)$ $= p\mathbb{P}(M_1 | H_0) + p(1 - \mathbb{P}(M_1 | H_0))$ = p.

Methodology

• In a spatial normal mixture model,

$$f(z_g) = \pi_{g0} f_o(z_g) + \pi_{g1} f_1(z_g),$$
(1)

where $z_g = \Phi^{-1}(1 - P_g)$ and π_{gs} are gene-specific prior probabilities.

• The prior probabilities, π_{gs} , based on gene network, are related to two latent Markov random fields $\mathbf{x}_s = \{x_{gs}; g = 1, \cdots, G\}, s = 0, 1$ by:

$$P(T_g = s) = \pi_{gs} = \frac{exp(x_{gs})}{exp(x_{g0}) + exp(x_{g1})},$$
(2)

 $T_g \equiv 1$ if gene g is expressed and $T_g \equiv 0$ if not expressed.

• The distribution of each spatial latent variable x_{gs} conditional on $x_{-gs} = \{x_{ks}; k \neq g\}$ depends only on its direct neighbors,

$$x_{gs} \mid x_{-gs} \sim N(\frac{1}{m_g} \sum_{l \in \delta_g} x_{ls}, \frac{\sigma_s^2}{m_g})$$
(3)

where δ_g is the set of indices for the neighbors of gene g, and m_g is the corresponding number of neighbors.

Results: Simulations

- To compare the Hybrid-Network method with other methods we conducted simulation studies designed to mimic testing situations that might arise in real world situations. We conducted standard two-group comparison studies (treatment vs control), k-group comparison (ANOVA), and regression analysis.
- The description of the setup is as follows:
 - 1) There are two groups of sample size varying from 5, 10, 25, 50.
 - The number of genes with the normal distribution, N(μ, 1), is 30, μ = 0 for the null hypothesis and μ = 1 for the alternative, and the number of genes with the Log-normal distribution, Log - normal(μ, 1), with μ = 0 in some cases and μ = 1 in other cases, is 14.
 - A graphical network is built among genes with 212 number of neighbors.

Results: Simulations

Table: 2-Group Comparison: Specificities

Sample size (n_i)	T-test sp	Rank Sum-test sp	Hybrid-Network-test sp
5	0.571726	0.557244	0.575314
10	0.689223	0.69797	0.716146
25	0.884244	0.918197	0.921273
50	0.9839	0.994575	0.994575

 $\mathsf{sp} \equiv \mathsf{specificity}$

Table: 3-Group Comparison: Specificities

Sample size (n_i)	F-test sp	H-test sp	Hybrid-Network test sp
5	0.579557	0.57232	0.585729
10	0.668287	0.668287	0.684932
25	0.89141	0.918197	0.929054
50	0.92437	0.9839	0.985663

 $\mathsf{sp} \equiv \mathsf{specificity}$

Results: Simulations

• The description of the setup is as follows:

- The sample size is 25 and the cutoff point, τ , is varied.
- The number of genes with the normal distribution , N(μ, 1), is 30, μ = 0 for the null hypothesis and μ = 1 for the alternative, and the number of genes with the Log-normal distribution, Log – normal(μ, 1), with μ = 0 in some cases and μ = 1 in other cases, is 14.
- A graphical network is built among genes with 212 number of neighbors.

University of Texas Rio Grande Valley

Results: Application to Tumor Data

- Tumor is cancer disease that occurs in 2 distinct anatomic regions:
- We use Affymetrix arrays to compare expression across the 2 groups.
- A graphical network is provided.
- We develop a Hybrid-Network test procedure using t-test, Rank Sum, Shapiro-Wilk tests, and CAR (Conditional Autoregressive Priors).

Genes	Gr1	Gr1		Gr2	Gr2	
AKT1	12.48167	11.75317		10.95536	11.51737	
ARHGEF2	14.99632	13.81004		13.45263	14.02982	
ATF2	12.93096	13.14289		13.44182	12.72238	
BDNF	3.392317	4.542258		4.716991	5.738768	
BRAF	9.111918	10.3433		10.07682	9.107217	
CDC25B	10.33114	11.04207		11.7139	11.76408	
		•				
:	:	:	:	:	:	:

Table: Human Ependymoma Microarray Data

This shows the human ependymoma expression data: genes as gene annotation, groups (Gr1 and Gr2) as sample annotation and real values as gene expression levels.

Results: Application to Tumor Data

Results: Application to Tumor Data

t = 0.846; rs = 0.962; hybN = 0.615; Shp = 0.002

t = 0.5 ; rs = 0.5 ; hybN = 0.5 ; Shp = 0

t = 0.359 ; rs = 0.74 ; hybN = 0.099 ; Shp = 0.02

Discussions

- Assumptions and graphical network profoundly impact the validity of an analysis.
- Assumptions are not routinely evaluated in multiple testing applications (Gene expression data analysis) because they entail adding new layers of multiplicity.
- Hybrid-network that incorporates both assumptions and graphical network shows good performances in simulations and in real data.
- Writing an R Package that considers assumptions and graphical network into the analysis of gene expressions data.

References

- Bioconductor: HybridMTest
- Comput Stat Data Anal. 53(5): 1604-1612.
- J Roy Statist Soc Ser B (Methodological) 57:289-300.
- Spatial and Spatio-temporal Epidemiology 2 (2011) 79-89.

Appendix

```
model
                   for (i in 1 : N) {
        z[i] ~ dnorm(muR[i],tauR[i]) #z-score
                  muR[i] < -mu[T[i]]
                 tauR[i] < -tau[T[i]]
                       #logistic
     pi[i,1] < -exp(X1[i])/(exp(X1[i])+exp(X2[i]))
     pi[i,2] < -exp(X2[i])/(exp(X1[i])+exp(X2[i]))
                  T[i]~dcat(pi[i,1:2])
                T1[i] < -equals(T[i],1)
                T2[i] < -equals(T[i],2)
             #Random Fields specification
    X1[1:N]~car.normal(adj[],weights[],num[],tau[1])
    X2[1:N]~car.normal(adj[],weights[],num[],tau[2])
                #Weights Specification
     for(k in 1:sumNumNeigh){weights[k] < -1}
        #Priors specification(precision for MRF)
     #Prior: means of normal mixture components
                mu[1] \sim dnorm(0.1.0E-6)
    mu[2]~dnorm(0,1.0E-6) #I(0.0,) #add I(,0.0)?
#Priors:precision/variance of normal mixture component
               tau[1] \sim dgamma(0.1,0.1)
               tau[2]~dgamma(0.1,0.1)
```

Appendix

source(" http://bioconductor.org/biocLite.R") biocLite("RBGL") library("graph") myNodesi-c("G1","G2","G3","G4","G5","G6","G7","G8","G9","G10", "G11"."G12"."G13"."G14"."G15"."G16"."G17"."G18"."G19"."G20". " G21" ." G22" ." G23" ." G24" ." G25" ." G26" ." G27" ." G28" ." G29" ." G30" . " G31", " G32", " G33", " G34", " G35", " G36", " G37", " G38", " G39", " G40", "G41", "G42", "G43", "G44") mvEdges < -list(G1=list(edges=c("G17","G12","G9","G8","G4")). G2=list(edges=c("G14","G13","G10","G7")). G3=list(edges=c("G32","G17","G15","G11","G8","G6")), G4=list(edges=c("G33","G32","G17","G16","G14","G12","G1")), G44=list(edges=c("G41","G32","G31","G26","G25","G22"))) g< -new("graphNEL",nodes=myNodes,edgeL=myEdges, edgemode="directed") library("Rgraphviz") library("RBGL") cc < -connectedComp(g)colors < -c("gray","purple","maroon","maroon2","orangered", "red", "darkmagenta", "tomato3", "tomato4", "olivedrab", "blue", "darkgreen", "turquoise1", "turquoise2", "turquoise3", "yellow", "violet", "violetred", "violetred1", "violetred2", "cadetblue", "cadetblue1", "cadetblue2", "cadetblue3", "cadetblue4", "burlywood", "burlywood1", "burlywood2", "burlywood3", "burlywood4", " darkgoldenrod", " darkgoldenrod1", " darkgoldenrod2", " darkgoldenrod3", " darkgoldenrod4", "chartreuse", "chartreuse1", "chartreuse2", "chartreuse3", "chartreuse4", "coral", "coral1", "coral2", "tomato2", listlen=(cc)) names(colors) < -unlist(cc)plot(g, nodeAttrs=list(fillcolor=colors))

Thank You All !!!