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Privacy in the age of information

e Detailed personal data is being collected and used on a daily
basis

e Search queries are used to determine ads placement.

e Emails in Gmail are used for targeted Ads.

e YouTube & Amazon use viewing/buying records for

recommendations.
e Social networks: Facebook, LinkedIn, etc.
e Hospitals collect health records.

e We want to make good use of these data, but individual privacy

is a big concern.



Famous privacy stories: Netflix

Netflix launched machine learning competitions to predict users’

movie ratings.
Released training data: anonymized user-movie ratings.
User identity recovered by matching with IMDB data.

The second Netflix competition ended in a privacy law-suit.



Famous privacy stories: NYC taxi

¢ In response to a public records request, NYC officials released

start-end data for 173 million taxi trips.

e The two taxi ID numbers are converted to one-way

cryptographic hashes.

e All ID’s fully recovered by matching the hashing output from the
two ID systems.



Other examples

e Anonymized medical records can be re-identified by matching

demographic information in public data base.

e AOL released search queries of anonymized users, but queries

contain identifying information.



The need of strong privacy protection

¢ In these examples, there was some protection, but apparently not
enough.
e Unknown auxiliary data IMDB, public demographic record, etc)
e Powerful and smart attackers (matched hashing, search query
mining, etc)

e Call for ad omnia privacy protection.



Basic setup

Data D = {zj,...,z,} € 2", where 2 is the sample space.
Statistic f : D — f(D) € R, e.g., sample mean, standard
deviation, regression coefficients, p-value, etc.

If f is deterministic, then not private against knowledgeable
attackers (eg. attacker knows all but one record).

In order to be private, f must be random.

Assume that (D) is a random variable taking values in RY.

e noise perturbed statistic

e sampling from a predictive distribution



Differential Privacy [Dwork et al 06]

Let f be a randomized statistic. We say f satisfies €-Differential
Privacy if

€

. Pr(f(D) € S) &,

~ Pr(f(D') €S)

IA

for all pairs (D, D’) differing in one entry and all measurable sets
SCR.

This is a property of f only, regardless of the dataset.



Differential privacy in statistics

Point estimation: [Dwork & L. 09], [Smith 11], [Chaudhuri et al
11], [L. 11], [Bassily et al 14], [Karwar & Slavkovic 16] ...

Nonparametric estimation: [Wasserman & Zhou 11], [Hall et al
12].

Minimax theory: [Chaudhuri & Hsu 11] [Duchi et al 14],
[Barber & Duchi 14]

Hypothesis testing: [Fienberg et al 13], [Johnson & Shmatikov
13], [Uhler et al 13], [Yuetal 13] ...

+ vast literature in machine learning and theoretical computer

science



This Work: Linear Model Selection

Data: D= (X,Y) ={(X;,Y;): 1 <i<n}

Model:
Y, =B"Xi+ 7,

where B € RY, X; e RY, X; % Py, 7, % N(0,062).

Task: find Jg = {j : B # 0}.



Model Selection For Linear Regression

Classical model selection (d << n): minimize some criteria
among a set of candidate models.

AIC, BIC, G, CV, GCV, etc.
High dimensional (d < n or d >> n): minimize penalized
residual sum of squares over the parameter space.
LASSO, SCAD, ElasticNet, ...

To achieve differential privacy, we combine these two
approaches, with additional post-randomization.

We give sufficient conditions on (n,d) and Py for consistent and

differentially private model selection.



Information Criteria

Let M C {1,...,d} represent a model Oy := {f € R? : Jg C M}.

Information Criteria
IC(M;D) = Goodness of fit + Model Complexity

Goodness of fit: mingcg,, Y11 (¥ — X; TB)? =:Q(M,D).
Model Complexity: ¢,|M]|.

o AIC: ¢, =2, BIC: ¢, =logn.

e Our choice of ¢,: more similar to BIC.



Step 1: Truncation & Standardization

Assume |X;j| < 1forall1<i<n,1<;j<d.
|Y;| <r,forall1 <i<n.
r is a tuning parameter

e 7 too small: more bias

e rtoo large: hard to control privacy

Can be achieved by standard d.p. pre-processing [Dwork & L.
09, Smith 11].



Step 2: Penalized Constrained Least Square

e Assume o7 is known (e.g., o%=1)
e Constrained GoF with ¢; constraint parameter R
n

OrM,D)=  min Y (Yi—X[B).

BeOM,|IBIh<R ;=

e Private model selection with privacy parameter £

M= arg m1n {QR(M D)—i—q)n]MH—

where (M € ) are independent double-exponential

random variables with mean 0 and variance 2.



Remarks

Privacy is achieved by randomization with additive noise

The additive noise is calibrated by Z(ngmz

Recall r upper bounds |Y;|, R upper bounds ||B]];.

e (r+R) large = less bias but needs more noise for privacy

e (r+R) small = more bias but less sensitive

¢, is the penalty coefficient.

2

Can be extended to the case of unknown ¢~ using local

sensitivity [Nissim et al 07].



Choice of algorithm parameters

e Choice of R
e The ideal choice is R = ||*||1, where B* is the true coefficient.
e Practically, use a d.p. version of maxy || By
e Choice of ¢,
e ¢, = 62logn, where 67 is a d.p. estimate of 62.
e mimics BIC.
e Choice of €

e & = 1: posterior probability changes less than three-fold
e £=0.1: less than 10%

e &£ > 10 is practically meaningless.



Privacy guarantee

e The assumptions |Y;| <r, |X;| <1, 1Byl < R imply that the
information criteria Qg (M, D) + ¢,,|M| are uniformly stable

under perturbation of a single data entry (global sensitivity).

. 2(r4R)? . . e
e The noise term =——— is calibrated to the sensitivity to

ensure e-differential privacy [Dwork et al 06].



Utility analysis

B* is true coefficient: do = ||*||0, bo = minj:ﬁj*7é0 1B;]
M ={j: B #0} e .4

|.#| < n! for some ¢; > 0

maxyc s M| < d = o(n?) for some ¢; > 0
. TXTXB L
mflSHﬁHoSéH—do ABE T k>0

2(1V 02 Vacie™ (R+r)?)logn < 6 < gy

kb3o’n

e~

e R>r

Theorem: P(M =M")— 1.
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Simulation: B = (1,1,1,0,0,0), N(0, 1) noise
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Simulation: B = (1,1,1,0,0,0), N(0, 1) noise

n = 1000
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Percent correct

Simulation: B = (1.5,1,0.5,0,0,0), N(0,1) noise
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Simulation: B = (1.5,1,0.5,0,0,0), N(0,1) noise
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Bay Area housing data

n = 235760 houses in the Bay Area sold between 2003 and
2006, with price between 0.1 million and 0.9 million, size under
3000 sqft.

Y is price.
Covariates: year of transaction, latitude and longitude, county,
house size, lot size, building age, number of bedrooms.

Baseline estimator: least squares with BIC. Baseline
R-squared= 0.282.



Results: average relative R-squared

e=1 =5
¢ 4 8 16 32 4 8 16 32
R=10 .623 .623 .623 .623 .624 .624 .624 .623
R=25 995 995 .995 995 .998 .998 .998 .998
R=35 997 .997 .997 .996 1 1 1 .999
R=100 .994 993 .993 993 .999 .999 999 .999




Results: variable selection frequency

¢ bsqft Isqft time lat long age

4 8 47 1 1 1 .84
8§ .88 .49 1 1 1 .83
16 .85 .48 1 1 1 .86
32 83 45 1 1 1 .80
¢ nbr ala ccC  mss ns sc

1 .60 .99 1 92 .58
8 1 .60 .98 1 91 .60
16 1 58 .97 1 91 58
32 1 56 .97 1 90 54




Conclusion

e D.p. model selection is possible, by privatizing standard

methods.
e Good utility requires a large sample size.

e Side information (e.g., £; norm of true coefficient) would be
helpful.



Thank You!

Paper: https://doi.org/10.1111/rssa.12324

Slides: www.stat.cmu.edu/~jinglei/talk.shtml


https://doi.org/10.1111/rssa.12324
www.stat.cmu.edu/~jinglei/talk.shtml

