
Analysis of Crimean-Congo Hemorrhagic Fever
Incidents with Dynamically Weighted Particle Filter

Duchwan Ryu

with D. Bilgili, Ö. Ergönül,
F. Liang, and N. Ebrahimi

Northern Illinois University

May 18, 2018

D. Ryu et al.(NIU) Analysis CCHF with DWPF 5/18/2018 <1>



Outline

Crimean-Congo Hemorrhagic Fever Incidents in Turkey

A Dynamic Model for CCHF Incidents

Estimation with Dynamically Weighted Particle Filter

Concluding Remarks

D. Ryu et al.(NIU) Analysis CCHF with DWPF 5/18/2018 <2>



Crimean-Congo Hemorrhagic Fever

Caused by Crimean-Congo Hemorrhagic virus.
) 4-5 days of non-bleeding phase: headache, high fever,
nausea, abdominal pain, muscle pain, diarrhea
) Bleeding in the eyes, the throat and in the stomach:
hypotension, relative bradycardia, conjunctivitis, skin
flushing and rash
) 10-20 days for convalescence
No vaccine is available, and treatment is mostly supportive.
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CCHF Characteristics

CCHF is a fatal viral infection disease with the fatality rate
of up to 30%.

The virus is transmitted to human from ticks and livestock
animals, as well as human.

The great majority of incidents are from agriculture and/or
husbandry:

Ergönül [1] reported that almost 90% of the cases around
year 2007 outbreak in Turkey were farmers.

CCHF has been found in parts of Africa, Asia, Eastern
Europe and Middle East.

The region of prevalent CCHF is growing as the following.
Before 1970: Soviet Union, Zaire, Uganda and China.
1970-2000s: Africa, Eastern Europe, Middle East and China.
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CCHF Reported before 1970
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CCHF Reported between 1970-2000s
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CCHF Incidents in Turkey
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CCHF Incidents in Turkey

From year 2004 to year 2012, there were 7040 CCHF
incidents observed at 3514 locations in 73 cities.

We consider CCHF incidents per 500,000 population of each
city in Turkey:

Incidents are nonnegative integers.
Incidents are time dependent.
Incidents from neighboring locations are associated with
each other.

We analyze the incidents of 9 months from March to
November in each year.

There is no incident during the winter season.
Incidents show a periodic pattern from March to November.
Incidents also show a nonlinear pattern over cities.
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Dynamic Model for CCHF Incidents

The CCHFs are sequentially observed at 79 months over 73
cities in Turkey.

At a given time, incidents show a nonlinear relationship
with location and take nonnegative integer values.
) Response Model: Poisson regression model and log-link
function with the radial basis function (RBF) network.

Some variables and parameters in the response model
change by time.
) Transition Model: Linear or nonlinear models for state
variables and time-varying parameters.
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Response Model

For a given time t , let Yt denote the number of incidents at
a location Xt = (latitude; longitude)t with E(Yt jXt) =  t .

Then, we may model Yt by the following generalized linear
mixed model

Yt � Poisson( t)

Lt = log t + �t = ft(Xt) + �t ;

where
ft (Xt ) is the RBF network,

�t � N (0; �2
t ) is an independent random error,

Lt is a latent variable.

D. Ryu et al.(NIU) Analysis CCHF with DWPF 5/18/2018 <11>



RBF network
Let Xm

t denote the set of all terms of m-degree polynomial,
e.g., for Xt = (Xt1;Xt2), X 2

t = (X 2
t1;Xt1Xt2;X 2

t2):

Consider Kt knots µt = (µt ;1; : : : ;µt ;Kt
) and let zt ;k denote

the distance from Xt to µt ;k , e.g., zt ;k =kXt�µt ;k k.

Then, for a radial basis function � on zt ;k as in Holmes [2],
RBF network is defined as a linear combination with
smoothing penalty t

ft(Xt) = �t ;0 +
MX

m=1
Xm

t βt ;m +
KtX
k=1

�(zt ;k )�t ;Mb+k = dtβt ;

where
dt = [1;Xt1; : : : ;Xm

t2; : : : ; �(zt ;Kt )] is a design row vector,

βt = [�t ;0; �t ;1; : : : ; �t ;Mb ; : : : ; �t ;Mb+Kt ] is a vector of
regression coefficients, for Mb = 1+ M (M+3)=2.
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Transition Model
Consider normal random errors �t0, �t1 , �t2 and εt3.
From time t to time t + 1, all nuisance parameters in the
response model λt = (�2

t ; t ;Kt ;µt) are transited by:

log �2
t+1 = C1 log �2

t + �t1; log �1
t+1 = C2 log �1

t + �t2;

�(Kt+1jKt) =

8><>:
1=3; for Kt+1 = Kt
1=3; for Kt+1 = Kt + 1
1=3; for Kt+1 = Kt � 1

;

µt+1 =

8>><>>:
µt + εt3; for Kt+1 = Kt

(µt ; �t+1;Kt+1) + εt3; for Kt+1 = Kt + 1
(µt)[�i ] + εt3; for Kt+1 = Kt � 1

:

The latent variable is also transited by:

Lt+1 = Lt + �t0 :
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Directed Acyclic Graph for Model
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�2
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Prior Distributions

Only for time t = 1, assign prior distributions for nuisance
parameters λ1:

Number of knots: K1 � Uniform,

Knot locations: µ1jX1 � N (X1; I2),

Nuisance parameters: �2
1 � IG(Ay ;By), 1 � G(A ;B).

For t > 1, the transition model projects λt based on λt�1.

For all times, we assign a conjugate Gaussian prior
distribution for regression coefficients βt :

(�t ;0;β
T
t ;1; : : : ;β

T
t ;M ) / 1;

(�t ;Mb+1; : : : ; �t ;Mb+Kt ) � N
 
0;
�2
t

t
I �

Kt

!
:
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Full Conditional Distributions
Regression coefficients:

βt j� � N (V �1
t DT

t Lt ; �
2
t V

�1
t ); t � 1;

where Dt is a design matrix that accumulate row vectors
[1;Xm

t ; �(zt ;1); : : : ; �(zt ;Kt )] corresponding to all locations,
Lt is a vector of latent variables and Vt = DT

t Dt + tI �.

Nuisance parameters:

�2
1 j� � IG [Ay+(n+K1)=2; fB�1

y +(RSS1+1β
T
1I

�β1)=2g
�1];

1j� �G [A+K1=2; fB�1


+ (βT
1 I �β1)=(2�

2
1 )g

�1];

where RSS1 = (L1�D1β1)
T (L1�D1β1).

We use latent variables L1 instead of Poisson responses Y1:

L1j� / p(Y1jL1)N (d 1β1; �
2
1 )
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Projection by Transition Model

For t > 1, we can generate λt = (t ; �
2
t ;Kt ;µt) with a data

assimilation method.

Defining λ0 by the hyperparameters, transition model bring
the target distribution for λt :

pfλ0:t jX1:t ;L1:tg
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Data Assimilation Methods

Kalman Filters:

Extended Kalman Filter (EKF)

Ensemble Kalman Filter (EnKF)

Particle Filters:

Sequential Importance Sampling (SIS)

Rejection Control (RC)

Dynamically Weighted Importance Sampling (DWIS)
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Kalman Filter
Dynamic Model: Yt is observed sequentially on state and
time-varying parameters Xt .

Yt = BtXt + �t ; �t � N (0;�e);

Xt = AtXt�1 + Ut ; Ut � N (0;�u):

Forecast (predict): Project state variable,fXt = At
cXt�1 � N (mt ;St):

Update (match): Correct the projectioncXt = fXt + Kt(Yt �Bt
fXt) � N (�t ;�t);

where

Kt = StBT
t (BtStBT

t +�e)
�1;

�t = E(fXt jYt = Btmt) = mt + Kt(Yt �Btmt);

�t = cov(fXt jfYt) = St �KtBtSt :
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Particle Filter

Dynamic Model: We relax the linearity and normality by
considering nonlinear ft and gt and non-Gaussian �t and Ut

Yt = ft(Xt) + �t ;

Xt = gt(Xt�1) + Ut :

Approximate the target (filtering) distribution �(X1:t jY1:t)

by a weighted set of particles, ffX (1)
1:t ; : : : ;

fX (Nt )
1:t g, through

importance sampling for a stream of particle i :

Sample : fX (i)
1:t from q(X1:t jY1:t);

Weight : w (i)
t =

�(X1:t jY1:t)

q(X1:t jY1:t)
;

where q is a proposal distribution.
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Sampling Methods for Particle Filters

Sequential Importance Sampling:
Apply the decomposition to the target density � and
proposal density q .

�(X1:t jY1:t ) = �(Xt jX1:t�1;Y1:t )�(X1:t�1jY1:t )

= �(X1jY1)
tY

k=1

�(Xk jX1:k�1;Y1:k )

Collects only one-step ahead samples with established
previous samples.

Rejection Control: If a stream of samples has less weight
than the threshold, send it back to t = 1.

Dynamically Weighted Importance Sampling: At each time
investigate the streams and then prune and enrich them.
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Dynamically Weighted Particle Filter
For CCHF, we need to sample λ1:t from the target
distribution p fλ0:t jX1:t ;L1:tg.

Assuming a Markovian structure:

pfλ0:t jX1:t ;L1:tg/pfλ0:t�1jX1:t�1;L1:t�1g p(λt jλt�1;Xt ;Lt);

where p(λt jλt�1;Xt ;Lt) is the marginalized over βt

p(λt jλt�1;Xt ;Lt)/
Z

p(Xt ;Lt jλt ;βt)�(βt jλt)�(λt jλt�1)dβt

/�(λt jλt�1) exp
n
�RSSt=2�2

t

o
:

As an effective sampling scheme, as Liang [3] and Ryu [4]
used, DWPF is a combination of SIS and DWIS algorithms.

DWIS consists of dynamic weighting and population control
scheme.
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Dynamic Weighting
1 Update the weight upper and lower bounds:

(Wlt ;Wut) 

8>><>>:
(Wlt=a ;Wut=a); if Nt < Nlow ;

(aWlt ; aWut ); if Nt > Nup ;

(Wlt ;Wut ); otherwise:

for i = 1; : : : ;Nt do
2 Draw λ(i)

�
from a proposal distribution q(λjλ(i)

t ):

r (i)
t = w (i)

t
p(λ(i)

� jλ
(i)
0:t�1)q(λ

(i)
t jλ

(i)
� )

p(λ(i)
t jλ

(i)
0:t�1)q(λ

(i)
� jλ

(i)
t )

:

3 Update the weight with �t = [c1 + c2W 1+c3
u ;t ]�1:

bλ(i)
t = λ(i)

�
; bw (i)

t = (1+ �t)r
(i)
t

endfor
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Population Control Scheme
Adaptive pruned-enriched population control:

(bλ(i)
t ; bw (i)

t ) ) (λ
(i 0)
t ;w (i 0)

t )

Algorithm: for i = 1; : : : ;Nt

1 If bw (i)
t < Wlt , prune with probability 1� bw (i)

t
Wlt

, or keep the

particle w.p. bw (i)
t

Wlt
and set the weight to Wlt .

2 If bw (i)
t > Wut , enrich the particle with ht = b

bw (i)
t

Wut
+ 1c

replications of particles and the adjusted weight bw (i)
t
ht

.
Assess: If N 0

t 62 (Nmin;Nmax), adjust weight bounds:

(Wlt ;Wut) 

(
(aWlt ; aWut ); if N 0

t > Nmax;

(Wlt=a ;Wut=a); if N 0

t < Nmin;

and keep the process until N 0

t 2 (Nmin;Nmax).
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Dynamically Weighted Importance Sampling

Dynamic Weighting Population Control

(λt ;wt) (λ0

t ;w 0

t) (λt+1;wt+1)

Pruned

Enriched
Enriched
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DWPF Procedure - Stage 1

1 Sample: Sample bλ(i)
1 from p(λ1jX1;L1), and set bw (i)

1 = 1 for
i = 1; : : : ;N0. These form the initial population (bλ1;cw 1),
and N0 is called the initial population size.

2 DWIS: Generate (λ1;w 1) from (bλ1;cw 1) using DWIS, with
p(λ1jX 1;L1) as the target distribution.
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DWPF Procedure - Stage 2

1 Extrapolation: Generate bλ(i)
2 from λ

(i)
1 , with the

extrapolation operator q(λ2jλ
(i)
1 ;X 1:2;L1:2), and set

bw (i)
2 = w (i)

1
p(λ(i)

1 ;
bλ(i)

2 jX1:2;L1:2)

p(�(i)
1 jL1)q(bλ(i)

2 jλ
(i)
1 ;X1:2;L1:2)

for each i = 1; 2; : : : ;N1.

2 DWIS: Generate (λ2;w 2) from (bλ2;cw 2) using DWIS, with
p(λ1:2jX1:2;L1:2) as the target distribution.
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DWPF Procedure - Stage t

1 Extrapolation: Generate bλ(i)
t from λ

(i)
t�1, with the

extrapolation operator q(λt jλ
(i)
1:t�1;X1:t ;L1:t) and set

bw (i)
t =w (i)

t�1
p(λ(i)

1:t�1;
bλ(i)

t jX1:t ;L1:t)

p(λ(i)
1:t�1jX1:t�1;L1:t�1)q(bλ(i)

t jλ
(i)
1:t�1;X1:t ;L1:t)

for each i = 1; 2; : : : ;Nt�1.

2 DWIS: Generate (λt ;w t) from (bλt ;cw t) using DWIS, with
p(λ1:t jX1:t ;L1:t) as the target distribution.
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Predicted Prevalence of CCHF
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Prediction Performance

NRMSEt =
q

1
73
P73

i=1(Yit � b it)2/range(Y1t ; : : : ;Y73t)

PNRMSEt =
q

1
23
P23

i=1(Tit � b'it)2/range(Y1t ; : : : ;Y73t)
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Concluding Remarks

The proposed model is suitable for modeling and mapping
relative risk of CCHF incidents in cities of Turkey.
It also delivers the results in a timely manner using an
effective computation method DWPF.
Estimated CCHF propagation reveals:

Birds and population of wild pigs in the region are suspected
for a disease to move in the direction of north to south.
Mostly farmers, interact and share the same habitant and
living space with those animals.
Due to economic reasons, farmers give up on precaution and
do not pay attention health information.

A timely control of the tick population and immunization of
the livestock animals are also highly recommended.
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