Fused Lasso Additive Model

Ashley Petersen UMN Biostatistics

Joint Work with Noah Simon \& Daniela Witten

\section*{nature
 | TME BITEREIT |
| :--- |} tions forviruses (ROPICAL CYCLONES (ROPICAL CYCLONES

SCIENCEINTHE PEABYTEERA

IIIIIIIII

TMME

"data tsunami"

"drowning in data"

"flood of data"

What is the structure of the data?

Flexible and interpretable regression modeling

Goal: Fit the model

$$
y=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)+\epsilon
$$

in a way that is simultaneously flexible, interpretable, and suitable for high-dimensional data.

Modeling decisions

- Which predictors should be included in the model?
- What functional forms should be used for the nonlinear functions?

Modeling decisions

- Which predictors should be included in the model?
- What functional forms should be used for the nonlinear functions?

Make these decisions in a data-adaptive way!

FLAM: fused lasso additive model

Fused lasso additive model

Goal: Fit the model

$$
y=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)+\epsilon
$$

in a way that is simultaneously flexible and interpretable.

Estimate $f_{1, \ldots,} f_{p}$ to each be piecewise constant with a small number of adaptively-chosen knots

What if we only had one covariate?

What if we only had one covariate?

What if we only had one covariate?

Estimating θ

$$
\underset{\boldsymbol{\theta} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta_{i}\right)^{2}+\lambda \sum_{i=1}^{n-1}\left|\theta_{j}-\theta_{j+1}\right|
$$

Estimating θ

$$
\underset{\boldsymbol{\theta} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta_{i}\right)^{2}+\lambda \sum_{i=1}^{n-1}\left|\theta_{j}-\theta_{j+1}\right|
$$

Controlling the number of knots

$$
\underset{\boldsymbol{\theta} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta_{i}\right)^{2}+\lambda \sum_{i=1}^{n-1}\left|\theta_{j}-\theta_{j+1}\right|
$$

Controlling the number of knots

$$
\underset{\theta \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta_{i}\right)^{2}+\lambda \sum_{i=1}^{n-1}\left|\theta_{j}-\theta_{j+1}\right|
$$

Optimization problem with one covariate

Solve

$$
\underset{\boldsymbol{\theta} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\theta}\|_{2}^{2}+\lambda\|D \boldsymbol{\theta}\|_{1}
$$

where

$$
D \boldsymbol{\theta}=\left(\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & 0 & 0 & \cdots & 1 & -1
\end{array}\right)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
0 \\
\theta_{n}
\end{array}\right)=\left(\begin{array}{c}
\theta_{1}-\theta_{2} \\
\theta_{2}-\theta_{3} \\
\vdots \\
\theta_{n-1}-\theta_{n}
\end{array}\right)
$$

Extending to multiple covariates

Single (ordered) covariate:

$$
\underset{\boldsymbol{\theta} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2}\|y-\boldsymbol{\theta}\|_{2}^{2}+\lambda\|D \boldsymbol{\theta}\|_{1}
$$

Multiple covariates:

$$
\operatorname{minimize}_{\theta_{0} \in \mathbb{R}, \boldsymbol{\theta}_{j} \in \mathbb{R}^{n}, 1 \leq j \leq p} \frac{1}{2}\left\|y-\sum_{j=1}^{p} \theta_{j}-\theta_{0}\right\|_{2}^{2}+\lambda \sum_{j=1}^{p}\left\|D P_{j} \theta_{j}\right\|_{1}
$$

where P_{j} is the permutation matrix that orders x_{j} from least to greatest

Do wealth and publishing papers make you happy?*

- Country-level data on 109 countries
- Outcome: happiness index from Cantril Scale
- Twelve predictors:
- Log gross national income
- Log scientific journal articles published
- Percent satisfied with freedom of choice
- Percent satisfied with job
- Percent satisfied with community
- Percent trusting in national government
- Percent rural population
- Percent females with secondary education
- Mortality rate, under five
- Life expectancy at birth
- Percent Internet users
- Percent labor force unemployed

*Probably, but we can't quite answer that question with our data

Additive model using smoothing splines

\% Females with at least secondary education

Additive model using smoothing splines

Using FLAM to predict happiness

Using FLAM to predict happiness

Inducing sparsity

- The World Bank and the United Nations don't just measure twelve covariates about countries
- There are countless possible covariates - many of which don't matter for predicting happiness
- Want to induce sparsity, i.e., estimate many of the θ_{1}, \ldots, θ_{p} to be the zero vector

Inducing sparsity

- The World Bank and the United Nations don't just measure twelve covariates about countries
- There are countless possible covariates - many of which don't matter for predicting happiness
- Want to induce sparsity, i.e., estimate many of the θ_{1}, \ldots, θ_{p} to be the zero vector

Add a second penalty to induce sparsity
$\underset{\theta_{0} \in \mathbb{R}, \theta_{j} \in \mathbb{R}^{n}, 1 \leq j \leq p}{\operatorname{minimize}} \frac{1}{2}\left\|y-\sum_{j=1}^{p} \boldsymbol{\theta}_{j}-\theta_{0} 1\right\|_{2}^{2}+\alpha \lambda \sum_{j=1}^{p}\left\|D P_{j} \boldsymbol{\theta}_{j}\right\|_{1}+(1-\alpha) \lambda \sum_{j=1}^{p}\left\|\theta_{j}\right\|_{2}$

Solving FLAM (with $a=1$)

Initialize $\hat{\theta}_{j}=\mathbf{0}$ for all j and $\hat{\theta}_{0}=0$. Cyclically iterate until convergence and for each $j=1, \ldots, p$ perform the following:

1. Compute the residual $r_{j}=y-\sum_{j^{\prime} \neq j} \hat{\theta}_{j^{\prime}}-\hat{\theta}_{0}$.
2. Solve the optimization problem

$$
\underset{\theta_{j}}{\operatorname{minimize}} \frac{1}{2}\left\|r_{j}-\theta_{j}\right\|_{2}^{2}+\lambda\left\|D P_{j} \theta_{j}\right\|_{1}
$$

using an algorithm for the fused lasso.
3. Compute the intercept, $\hat{\theta}_{0} \leftarrow \hat{\theta}_{0}+$ mean $\left(\hat{\theta}_{j}\right)$, and center, $\hat{\theta}_{j} \leftarrow \hat{\theta}_{j}-\operatorname{mean}\left(\hat{\theta}_{j}\right)$.

Solving FLAM

Initialize $\hat{\theta}_{j}=\mathbf{0}$ for all j and $\hat{\theta}_{0}=0$. Cyclically iterate until convergence and for each $j=1, \ldots, p$ perform the following:

1. Compute the residual $r_{j}=y-\sum_{j^{\prime} \neq j} \hat{\theta}_{j^{\prime}}-\hat{\theta}_{0}$.
2. Solve the optimization problem
$\underset{\theta_{j}}{\operatorname{minimize}} \frac{1}{2}\left\|r_{j}-\theta_{j}\right\|_{2}^{2}+\alpha \lambda\left\|D P_{j} \theta_{j}\right\|_{1}+(1-\alpha) \lambda\left\|\theta_{j}\right\|_{2}$ using ??.
3. Compute the intercept, $\hat{\theta}_{0} \leftarrow \hat{\theta}_{0}+\operatorname{mean}\left(\hat{\theta}_{j}\right)$, and center, $\hat{\theta}_{j} \leftarrow \hat{\theta}_{j}-\operatorname{mean}\left(\hat{\theta}_{j}\right)$.

A useful result!

$$
\operatorname{minimize}_{\boldsymbol{\theta} \in \mathbb{R}^{z}} \frac{1}{2}\|y-\boldsymbol{\theta}\|_{2}^{2}+\alpha \lambda\|D \boldsymbol{\theta}\|_{1}+(1-\alpha) \lambda\|\boldsymbol{\theta}\|_{2}
$$

Solution $\hat{\boldsymbol{\theta}}$ obtained using algorithm for fused lasso

A useful result!

$$
\underset{\boldsymbol{\theta} \in \mathbb{R}^{\mathbb{R}^{z}}}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\theta}\|_{2}^{2}+\alpha \lambda\|\boldsymbol{D}\|_{1}+(1-\alpha) \lambda\|\boldsymbol{\theta}\|_{2}
$$

Solution $\hat{\boldsymbol{\theta}}$ obtained using algorithm for fused lasso

Solution is

$$
\left(1-\frac{(1-\alpha) \lambda}{\|\hat{\boldsymbol{\theta}}\|_{2}}\right)_{+}
$$

Solving FLAM

Initialize $\hat{\theta}_{j}=\mathbf{0}$ for all j and $\hat{\theta}_{0}=0$. Cyclically iterate until convergence and for each $j=1, \ldots, p$ perform the following: 1. Compute the residual $r_{j}=y-\sum_{j^{\prime} \neq j} \hat{\theta}_{j^{\prime}}-\hat{\theta}_{0}$.
2. Solve the optimization problem

$$
\underset{\theta_{j}}{\operatorname{minimize}} \frac{1}{2}\left\|r_{j}-\theta_{j}\right\|_{2}^{2}+\alpha \lambda\left\|D P_{j} \theta_{j}\right\|_{1}
$$

using an algorithm for the fused lasso.
3. Compute the intercept, $\hat{\theta}_{0} \leftarrow \hat{\theta}_{0}+$ mean $\left(\hat{\theta}_{j}\right)$, and center, $\hat{\theta}_{j} \leftarrow \hat{\theta}_{j}-\operatorname{mean}\left(\hat{\theta}_{j}\right)$.
4. Soft-scale the estimate: $\hat{\theta}_{j} \leftarrow\left(1-\frac{(1-\alpha) \lambda}{\left\|\hat{\theta}_{j}\right\|_{2}}\right)_{+} \hat{\theta}_{j}$.

Does FLAM work?

- Generate 100 observations for the training and test sets:

$$
y_{i}=\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)+\epsilon_{i} \text { with } \epsilon_{i} \sim N(0,1)
$$

- Four non-zero f_{j} and ninety-six $f_{j}=0$
- Compare FLAM to sparse additive model (SpAM)

Best-case:

Worst-case:

Simulation results

Best-case:

Worst-case:

SPLAT: sparse partially linear additive trend filtering

Sparse partially linear additive trend filtering

Goal: Fit the model

$$
y=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)+\epsilon
$$

in a way that is simultaneously flexible and interpretable.

Estimate f_{1}, \ldots, f_{p} to each be either linear or piecewise polynomial with a small number of adaptively-chosen knots

Working with a single covariate

Working with a single covariate

Working with a single covariate

Decomposition of fit

Optimization problem for single covariate

Optimization problem for single covariate

limits number of knots

Optimization problem for single covariate

$$
\begin{aligned}
& \text { encourages linear fit }
\end{aligned}
$$

Impact of λ

SPLAT penalties

non-linear fit: Y

linear fit: $x \beta$

Solving SPLAT

Optimization problem for $\mathrm{p}=1$:

$\underset{\boldsymbol{\theta}, \boldsymbol{\gamma} \in \mathbb{R}^{n}, \beta \in \mathbb{R}}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\theta}\|_{2}^{2}+\alpha \lambda\left\|\boldsymbol{D}^{(\boldsymbol{P} \boldsymbol{x}, k+1)} \boldsymbol{P} \boldsymbol{\gamma}\right\|_{1}+(1-\alpha) \lambda\|\boldsymbol{\gamma}\|_{2}+\tilde{\lambda}\|\boldsymbol{\theta}\|_{2} \quad$ subject to $\quad \boldsymbol{\theta}=\boldsymbol{x} \beta+\boldsymbol{\gamma}$
We prove that the solution is:

$$
\left(1-\frac{\tilde{\lambda}}{\left\|x\left(\boldsymbol{x}^{\top} x\right)^{-1} x^{\top} y+\left(1-\frac{(1-\alpha) \lambda}{\|\tilde{\eta}\|_{2}}\right)_{+} \tilde{r}\right\|_{2}}\right)_{+}\left(x\left(x^{\top} x\right)^{-1} x^{\top} y+\left(1-\frac{(1-\alpha) \lambda}{\|\tilde{\gamma}\|_{2}}\right)_{+} \tilde{\gamma}\right)
$$

where $\tilde{\gamma}$ is the solution to a trend filtering problem

The solution is just a known function of $\tilde{\boldsymbol{\gamma}}$

Testing out SPLAT's performance

- Generate 100 observations for the training, test, and validation sets:

$$
y_{i}=\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)+\epsilon_{i} \text { with } \epsilon_{i} \sim N(0,1)
$$

- Two non-linear f_{j}, two linear f_{j}, and sixteen $f_{j}=0$
- Compare SPLAT to SpAM

Simulation performance

Individual covariate fits

SpAM

SPLAT

overview of adaptive additive modeling

FLAM

Covariate fit = piecewise constant with adaptively chosen knots

- Flexible: adaptive selection of covariates and knots
- Interpretable: simple piecewise constant fits
- Applicable when $p>n$

FLAM

Covariate fit = piecewise constant with adaptively chosen knots

- Flexible: adaptive selection of covariates and knots
- Interpretable: simple piecewise constant fits
- Applicable when $p>n$

SPLAT

- higher-order piecewise fits
- adaptive selection of exactly linear fits

Find out more

- FLAM is published in Journal of Computational and Graphical Statistics
- R package flam available on CRAN
- Shiny apps for FLAM at ajpete.com
- Resources for SPLAT coming soon

Fused Lasso Additive Model - Simulated Data Application

FLAM estimates conditional relationships in a flexible and interpretable way by estimating the fit for each covariate to be piecewise constant with data-adaptive knots. Read our paper here. Here we compare the estimated fits to the true fits using simulated data.

Data simulation:

One hundred observations are simulated using an additive model with four non-zero functions of the predictors and the option of including noise functions, which are zero everywhere. The predictors are simulated from Uniform(-2.5, 2.5) and the errors are $\operatorname{Normal}(0,1)$.

Questions?

