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What is the structure of the data”?

—— p covariates —

“traditional”
data

n subjects

n>p

— n subjects —

p covariates

high-dimensional data




Flexible and interpretable regression modeling

Fit the model
P
y =D fix)+e
J=1

in a way that is simultaneously flexible, interpretable, and
suitable for high-dimensional data.



Modeling decisions

e Which predictors should be included in the model?

e \What functional forms should be used for the non-
linear functions?
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FLAM: fused lasso additive model




Fused lasso additive model

Goal: Fit the model
P
y =D fix)+e
J=1

in a way that is simultaneously flexible and interpretable.

Estimate f1,..., fp to each be piecewise constant
with a small number of adaptively-chosen knots



What if we only had one covariate”
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What if we only had one covariate”
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What if we only had one covariate”
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Estimating ©
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Estimating ©
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Controlling the number of knots
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Optimization problem with one covariate

Solve

where
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Extending to multiple covariates

Single (ordered) covariate:

1 2
SR “lly — @0 D6
minimize |y |5+ A||DE||,

Multiple covariates:

2
p

1 P
Inimi “lly =) 6;—601 AE: DP:0:
bR GeRm1<j<p 2 || Jz_; T < 1DP;6;]l
— , —

where P;is the permutation matrix that orders x; from least to greatest



Do wealth and publishing papers make you happy?*

e Country-level data on 109 countries
e Qutcome: happiness index from Cantril Scale
e Twelve predictors:
- Log gross national income
- Log scientific journal articles published
- Percent satisfied with freedom of choice
- Percent satisfied with job
- Percent satisfied with community
- Percent trusting in national government
- Percent rural population
- Percent females with secondary education
- Mortality rate, under five
- Life expectancy at birth
- Percent Internet users 0 Worst possibi
- Percent labor force unemployed te foryou

10 = Best possible
life for you

*Probably, but we can't quite answer that question with our data



Additive model using smoothing splines
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Change in mean happiness index

Additive model using smoothing splines
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Change in mean happiness index Change in mean happiness index

Change in mean happiness index
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Change in mean happiness index
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Inducing sparsity

* The World Bank and the United Nations don't just measure
twelve covariates about countries

 There are — many of
which don’t matter for predicting happiness

* Want to , 1.e., estimate many of the 64,...,
B, to be the zero vector



Inducing sparsity

* The World Bank and the United Nations don't just measure
twelve covariates about countries

e There are countless possible covariates — many of
which don’t matter for predicting happiness

* Want to , 1.e., estimate many of the 64,...,
Bp to be the zero vector

Add a second penalty to induce sparsity

2

p p
+aX Y [IDPiB; |l +(1 — )X > |65,
j=1

j=1

p
. 1
minimize = y—E 0, — 61
00€R,0,€R",1<j<p 2 —
J:

2




Solving FLAM (witha = 1)

1.

2. Solve the optimization problem

. 1 2
minimize 5 |rj — 0il|5 + X||DP;6;]|,

0,

using an algorithm for the fused lasso.



Solving FLAM

1.

2. Solve the optimization problem

1
minimize _ ||r; — 6|3 + X [ DP;6; |, + (1 — @) |16l
J

using /7.



A useful result!

. 1 2
minimize §||y—9||2+a)\|\09||1 (1 —a)A|@],

|

Solution é obtained
using algorithm for
fused lasso



A useful result!

1
minimize > ||y — 0[5+ ar[|D8|ly {+ (1 — )X (6]
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|
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_|_

fused lasso HéHz



Solving FLAM

4. Soft-scale the estimate:



Does FLAM work?

 Generate 100 observations for the training and test sets:

p
yi = Z IS(XU) + €; with €; ~ N(O, 1)
j=1

* Four non-zero f;jand ninety-six f;=0
« Compare FLAM to sparse additive model (SpAM)

Best—-case: Worst-case:

= L A
S

fi(x)
0
|
fi(x)
0
|

2 -1
2 1




test set MSE
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Simulation
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SPLAT: sparse partially linear additive trend filtering




Sparse partially linear additive trend filtering

Goal: Fit the model
p
y =D fix)+e
J=1

in a way that is simultaneously flexible and interpretable.

Estimate f1,..., fp to each be either linear or
piecewise polynomial with a small number of
adaptively-chosen knots



Working with a single covariate
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Working with a single covariate
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Working with a single covariate
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Decomposition of fit

non-linear fit linear fit



Optimization problem for single covariate

non-linear fit: y linear fit: x

. | ST (k+1) _ - _
minimize > ||y Il + a4 ||D“y| +(1-a)alirll, subjectto 6=xp+y



Optimization problem for single covariate

non-linear fit: y linear fit: x

. | ST (k+1) _ - _
minimize - [ly - 013 + « ||1) y“l (1—a)Allyll, subjectto O=xf+7y

limits number of knots



Optimization problem for single covariate

non-linear fit: y linear fit: x

. | ST (k+1) _ - _
minimize - |y Il + a4 || D Dy | +(1 - a)lirll,| subjectto 6=xp+y

encourages linear fit



Impact of A

Large
ge ., — +
A
non-linear fit: y linear fit: xf3
Small |
= +




SPLAT penalties

non-linear fit: y linear fit: xf3

minimize

2
1 p
_ +a Z ||D(ijj,k+l)I)JyJ”
0,7,ER"1<j<pipeRe 2 2 o 1

p
Y- ZOJ.
j=1

subjectto 6, =x,6,+v; VJ, l l l
controls allows a performs
complexity of linear or variable

non-linear fits non-linear fit selection



Solving SPLAT

Optimization problem for p = 1:

L | TR (Px.k+1) _ 7 - —
minimize ||y 9||2+a/1HD P}'H1+(1 &)Allyll, + Z116]l, subjectto O =xp+7y.

We prove that the solution is:
( \

~ | —
- A <x(xTx)_1xTy ¥ (1 - ||~|(|M> 7)
1712/ + 2/ 4

\

where 7 is the solution to a trend filtering problem

The solution is just a known function of Y



Testing out SPLAT’s performance

» Generate 100 observations for the training, test, and validation sets:

P
yi = Z E(XU) + €; with ¢; ~ N(O, ].)
j=1
 Two non-linear fj, two linear f; and sixteen f; =0
* Compare SPLAT to SpAM




Test set MSE

Simulation performance
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dual covariate fits
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overview of adaptive additive modeling




FLAM

Covariate fit = piecewise constant with adaptively chosen knots

e [lexible: adaptive selection of covariates and knots
° simple piecewise constant fits

o Applicable when p > n



FLAM

Covariate fit = piecewise constant with adaptively chosen knots

e [lexible: adaptive selection of covariates and knots
° simple piecewise constant fits

o Applicable when p > n

SPLAT



Find out more

 FLAM is published in Journal of Computational and Graphical Statistics
* R package flam available on CRAN

e Shiny apps for FLAM at

* Resources for SPLAT coming soon

ese < | m s O T xS o o

Fused Lasso Additive Model - Simulated Data Application

. . . X X Function 1 Function 2 Function 3 Function 4
FLAM estimates conditional relationships in a

flexible and interpretable way by estimating the “ “ “ 7
fit for each covariate to be piecewise constant N . N .
with data-adaptive knots. Read our paper here.

— 1=
Here we compare the estimated fits to the true " : I ! N I " :
. . . == 1 N pma—
fits using simulated data. 2 o4 | 2 o ! ® o | : g o :

) . ) (I R )
Data simulation: N | - o 4 h— - |
- _——— - 1
| ——

One hundred observations are simulated using . . - . N
an additive model with four non-zero functions
of the predictors and the option of including @ @ @ @
noise functions, which are zero everywhere. The 2 o4 0 1 2 2 o4 0 1 2 2 o4 0 1 2 2 4 0 1 2

predictors are simulated from Uniform(-2.5, 2.5)
and the errors are Normal(0, 1).



Questions?



