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Motivation: End-of-Season Estimates
I USDA National Agricultural Statistics Service (NASS)

I 400+ reports annually, including crops estimates

I Agricultural Statistics Board
I Expert Assessment
I State

I Agricultural Statistics District (ASD), County
I Publication standard

I 30+ positive reports for yield or

I 3+ positive reports for yield and 25%+ coverage
for harvested acreage

I NASS QuickStats

I Two major users within USDA
I Farm Service Agency (FSA)
I Risk Management Agency (RMA)

NASS county estimates are used in the process of setting
payments for some agricultural programs!
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Motivation: County-Level Planted Acreage Estimates
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NASS COUNTY AGRICULTURAL PRODUCTION SURVEYS (CAPS) ESTIMATES: CORN, 2015

I 2837 counties in 36 sampled states

I 2426 in-sample counties and 411 not-in-sample counties
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Motivation and Goals

I Explore auxiliary sources that indicate corn planting activity
I list-based survey; changes in planting practices
I each survey response includes information on entire farm or ranch, all

commodities
I approach: commodity-speci�c administrative data sources

I Combine survey and auxiliary data to produce substate-level∗

predictions and measures of uncertainty for in-sample and
not-in-sample domains

I small sample sizes (number of positive reports used to produce the
survey summary)

I approach: small area models

I Preserve agreement between di�erent aggregation levels

∗county-level and (agricultural statistics) district-level
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Using Information from Multiple Data Sources

Table 1: Counties, in Sampled States, with Corn Planting Activity, 2015

Data Source (USDA) Data Collection Method Number of Counties

NASS CAPS Probability Sample 2426

Farm Service Agency (FSA) Volunteer Reporting 2398
Risk Management Agency (RMA) Volunteer Reporting 2230
NASS Cropland Data Layer (CDL) Remote Sensing + 2761

Ground-Reference

I De�ne Set of Counties with Corn Planting Activity

I combine NASS CAPS, FSA, RMA and CDL
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Small Amount of Survey Summary Data
2015 Corn Planted Acreage

Nationwide summaries

I sample size within a county: [1, 191]; median 18

I sample size within a district: [1, 993]; median 206

I number of districts within a state: [3, 15]; median 9

I number of counties within a district: [1, 32]; median 8
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Exploring Relationships between Multiple Data Sources
2015 Corn Planted Acreage (PL); County-Level

 Survey vs FSA Data, Illinois 
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Survey Estimate=1847+0.943*FSA PL

R^2=0.85

 Survey vs RMA Data, Illinois 
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Survey Estimate=4700+1.036*RMA PL

R^2=0.83

 Survey vs CDL Data, Illinois 
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Survey Estimate=4108+0.912*CDL PL

R^2=0.85

Table 2: Nationwide Summaries

FSA PL RMA PL CDL PL

1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu.

R2 0.82 0.89 0.92 0.76 0.86 0.91 0.85 0.90 0.93
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Borrowing Information from Multiple Data Sources
2015 Corn Planted Acreage (PL); County-Level

 Survey vs Combined Administrative Data, Illinois 
 102 Counties 
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Survey Estimate=2177+0.915*Admin PL

R^2=0.85

Table 3: Nationwide Summaries

FSA PL RMA PL CDL PL Admin PL
1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu.

R2 0.82 0.89 0.92 0.76 0.86 0.91 0.85 0.90 0.93 0.85 0.90 0.93

Admin PL: combine FSA, RMA and CDL, with preference for maximum
planted acreage
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Approach: Subarea-Level Model for a Given State

Linkage model

θij |(β, σ2u , vi ) ∼ N(x
′

ijβ + vi , σ
2
u)

vi |σ2v ∼ N(0, σ2v )

Sampling model
θ̂ij |(θij , σ̂2ij) ∼ N(θij , σ̂

2
ij)

Prior distributions

π(β, σ2u , σ
2
v ) = π(β)π(σ2u)π(σ2v )

I i = 1, ...,m, areas (districts)
I j = 1, ..., nci , subareas (counties) in area (district) i
I
∑m

i=1 n
c
i = nc , number of counties

I θij , county-level parameter of interest
I (θ̂ij , σ̂

2
ij), survey summary

I xij = (1, xij)
I xij = Admin PL (M); for comparison, NULL (M0) and Admin PL as

combined FSA and RMA only (M1) are also used
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Modeling Strategies with Incomplete Data

Missing xij , but available θ̂ij

I impute xij using the administrative data available for a similar
county in the given state

I absolute-value norm, applied to the corresponding θ̂ij 's

Available (θ̂ij , σ̂
2
ij , xij)

I posterior summaries using MCMC iterates (after burn-in and
thinning); r = 1, ...,R

I parameter iterates: βr , σ
2

u,r , σ
2

v,r

I county-level iterates: θij,r
I district-level iterates: θi,r :=

∑nci
j=1 θij,r

Missing (θ̂ij , σ̂
2
ij), but xij available

I prediction using the linkage model: θij,r ∼ N(x
′

ijβr + vi,r , σ
2
u,r )
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Results: Model Comparison
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Results: Shrinkage away from the Survey Estimate

Posterior mean:

θ̃ij = x
′

ij β̃ + γ̃i (
¯̂
θγi − x̄γ

′

i β̃) + γ̃ij

{
θ̂ij − x

′

ij β̃ − γ̃i (
¯̂
θγi − x̄γ

′

i β̃)
}

= γ̃ij θ̂ij + (1− γ̃ij)
{
x
′

ij β̃ + γ̃i (
¯̂
θγi − x̄γ

′

i β̃)
}

I γ̃ij =
σ̃2u

σ̃2u+σ̂
2
ij
, γ̃i. =

∑nci
j=1 γ̃ij , γ̃i =

σ̃2v
σ̃2v +σ̃

2
u (γ̃i.)

−1

I ¯̂θγi = (γ̃i.)
−1
∑nci

j=1 γ̃ij θ̂ij , x̄
γ
i = (γ̃i.)

−1
∑nci

j=1 γ̃ijxij

Table 4: Summary of Estimated Shrinkage Coe�cients γij (%)

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.

Model M0 None 60.66 85.69 98.01
Model M1 FSA and RMA 2.67 11.41 44.92
Model M FSA, RMA and CDL 2.42 10.25 40.94
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Benchmarking Constraint

For a prepublished state-level value, a

I
∑nc∗

i,j θ̃
B
ij = a, nc∗ is the total number of counties

I ratio adjustment, applied at the (MCMC) iteration-level

θBij,r := θij,r × a×

 m∑
k=1

nc∗k∑
l=1

θkl,r

−1

,

nc∗k is the total number of counties in district k , k = 1, ...,m.

Discussion:

I de�ning the set of counties nc∗
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Results

In−Sample
Yes
No
NA

MODELING STRATEGY

I 2420 in-sample counties and 209 not-in-sample counties (M)
I Texas: largest number of not-in-sample predictions, 42 out of 184

counties, accounting for ∼0.7% of planted acreage in the state
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Results: Increased Number of County-Level Estimates
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MODEL−BASED PREDICTIONS: CORN, 2015

I (M) model-based predictions available for 2629 counties
I RECALL: survey estimates available for 2426 counties
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Results: Increased Precision

Table 5: SE Summaries for Counties with Available Survey Estimates

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.

Survey 640.90 2719.00 9494.00
Model M1 FSA, RMA 429.40 1233.00 2850.00
Model M FSA, RMA and CDL 429.30 1166.00 2839.00
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Results: Decreased Relative Variability

Table 6: CV(%) Summaries for Counties with Available Survey Estimates

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.

Survey 21.08 31.91 55.42
Model M1 FSA, RMA 5.97 12.60 38.74
Model M FSA, RMA and CDL 5.90 11.84 37.92
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Results: O�cial Statistics

I Composite predictions

I Common publication standard

I 2420 counties with available survey estimates:

I 1125 survey CVs ≤ 30% vs. 1693 model (M) CVs ≤ 30%

I 2629 counties with available model-based (M) predictions:
I 1696 model (M) CVs ≤ 30%

I Current NASS publication standard
I county-level sample size and e�ciency of weighting adjustments
I 1622 counties published in NASS QuickStats
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Summary and Future Work

Contributions of administrative data
I model-based county-level and district-level predictions, incorporating

survey and administrative data (implicit weights)
I de�ned set of counties with planting activity
I reduction in the need for covariate imputation, by using remote

sensing data (110(M1) vs. 12(M))
I increased number of county-level estimates (2486(M1) vs. 2629(M))
I increased precision and relative precision; model vs. survey

I 2.67-71.39% / 19.96-74.5% in most of the county-level SE / CV
I 18.27-58.59% / 28.72-62.55% in most of the district-level SE / CV

I o�cial statistics

Future work
I out-of-sample states
I model speci�cation; normality assumption and constraints
I quality of di�erent data sources; imputation strategies and errors
I publication standard
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aerciulescu@niss.org
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Internal Model Validation
Posterior Predictive Checks

I Posterior samples: (βr , (σ2v )r , (σ2u)r ), r = 1, ...,R
I Draw replicates (θtij , y

t
ij), t = 1, ...,T (every 10th sample from the R

iterates):
v t
i ∼ N(0, (σ2v )t)

θtij ∼ N(x
′

ijβ
t + v t

i , (σ
2
u)t)

y t
ij ∼ N(θtij , (σ̂

2
ij)

t)

I For a given test statistic, i.e. identity function,

p = T−1

T∑
t=1

I
(
T (y t

ij) > T (θ̂ij)
)
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External Model Validation
NASS O�cial Values

I Agricultural Statistics Board and Census of Agriculture
I Five years: 2012-2016
I Multiple commodities: corn, soybeans, sorghum, wheat
I Comparison metrics: (absolute) (relative) di�erences, credible

intervals coverage
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