## Future of Integer Calibration Weighting Methods

#### Luca Sartore

#### National Institute of Statistical Sciences (NISS) USDA National Agricultural Statistics Service

lsartore@niss.org - luca.sartore@nass.usda.gov

#### SDSS 2018 Data Science at the National Institute of Statistical Sciences

May 17, 2018





"... providing timely, accurate, and useful statistics in service to U.S. agriculture."

## Quantum Computing: The Future of Integer Calibration

#### Luca Sartore

National Institute of Statistical Sciences (NISS) USDA National Agricultural Statistics Service

lsartore@niss.org - luca.sartore@nass.usda.gov

SDSS 2018 Data Science at the National Institute of Statistical Sciences

May 17, 2018





"... providing timely, accurate, and useful statistics in service to U.S. agriculture."

#### Acknowledgements

Valbona Bejleri Katherine Cespedes Matt Fetter Thomas Jacob Johnathan Lisic Beth Schlein Clifford Spiegelman Kelly Toppin Linda Young





#### Presentation Outline

#### PART I: MOTIVATION

- 1. Census of Agriculture
- 2. The calibration problem at NASS

#### PART II: METHODOLOGY

- 3. Quantum computing
- 4. Quantum rounding algorithm
- 5. Quantum integer calibration

#### PART III: APPLICATION

- 6. Simulation study
- 7. Concluding remarks





# PART I

- 1. Census of Agriculture
- 2. The calibration problem at NASS





## Census of Agriculture

Every five years, USDA's National Agricultural Statistics Service (NASS) conducts the Census of Agriculture.

- The Census provides a detailed picture of U.S. farms, ranches and the people who operate them.
- It is the only source of uniform, comprehensive agricultural data for every state and county in the United States.
- NASS also obtains information on most commodities from administrative sources or surveys of non-farm populations (e.g. cotton ginning data).





## DSE: Dual-System Estimation

NASS uses DSE to adjust its estimates by generating weights assigned to each data-record.

- DSE requires two independent surveys to produce adjusted estimates for under-coverage, non-response and incorrect farm-classification at the national, state and county levels.
- The adjusted weights are used as starting values for the calibration process.
- The weights are calibrated to ensure that the Census estimates are consistent across all levels of aggregation and in agreement with information from other sources.





#### Calibration problem

A solution  $\hat{w}$  such that T = Aw, where

- T is a vector partitioned into y known and  $y^*$  unknown population totals,
- $\boldsymbol{A}$  is the matrix of collected data from a population, and
- w is a vector of unknown weights.

Calibration finds the solution of the linear system  $y = \tilde{A}w$ , where

 $\tilde{A}$  is a sub-matrix of the collected data.

NASS publishes its estimates by using integer weights to avoid fractional farms.





#### **INCA:** Integer Calibration

Currently, NASS uses the following steps to calibrate its weights:

- 1. All unfeasible weights are truncated to their closest boundary, and to minimize the objective function, non-integer weights are then rounded sequentially according to an importance index based on the gradient.
- 2. Each weight, according to the magnitude of the gradient, is allowed to move by unit-steps that decrease the objective function.

#### Limitation

INCA converges to a **local minima**, not to a global solution.





# PART II METHODOLOGY

- 3. Quantum computing
- 4. Quantum rounding algorithm
- 5. Quantum integer calibration





## Quantum Computing and the future of INCA

#### Quantum computing

Looks promising for applications where complex problems need computationally efficient solutions, such as finding a discrete global optimum.

#### Quantum Integer Calibration (QUINCA)

- Rounds the DSE weights with a quantum search.
- Performs multidimensional adjustments of the rounded weights to match given calibration benchmarks.





## The quantum-bit (qubit)

Classical computers use bits to represent either zeros or ones, but quantum computers operate with qubits (or quantum bits), which are allowed to denote values that are *simultaneously* 0 and 1.

Observing the status of a qubit with superposition  $\alpha_0|0\rangle+\alpha_1|1\rangle$  will produce

$$x = \begin{cases} 0, & ext{with probability } |lpha_0|^2, \\ 1, & ext{with probability } |lpha_1|^2, \end{cases}$$

where

- ▶ the amplitudes of  $\alpha_0$  and  $\alpha_1 \in \mathbb{C}$  satisfy  $|\alpha_0|^2 + |\alpha_1|^2 = 1$ ,
- |0
  angle denotes the vector  $(1,0)^{ op}$ , and
- $|1\rangle$  represents the vector  $(0,1)^{ op}$ .





#### Quantum operations

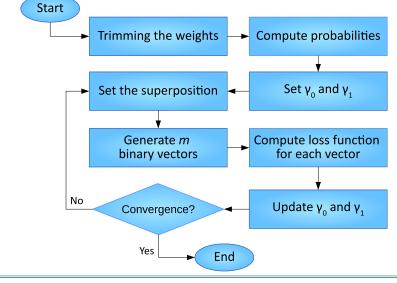
Quantum algorithms manipulate the qubits and produce measurements of the probability distribution of the observed outcomes.

- 1. The algorithm takes as input n classical bits and creates a superposition of  $2^n$  possible states.
- 2. The superposition is then processed by quantum operations.
- 3. When the superposition is measured, it randomly collapses to zero or one.
- 4. Step 3 is iterated to assure convergence over the probability distribution.





#### Quantum\_rounding at a glance





SDSS 2018 - Data Science at NISS - Luca Sartore



## Example of quantum rounding

We have a matrix of data

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 6 & 4 & 8 \end{bmatrix}$$

- We start with the DSE weights  $w^* = (2.3, 5.1, 7.9)^\top$ .
- Our known totals are  $y = (15, 97)^{\top}$ .
- We consider the objective function

$$L(w) = \sum_i |y_i - w^\top A_i|,$$

where  $A_i$  is the *i*-th row of the matrix A.

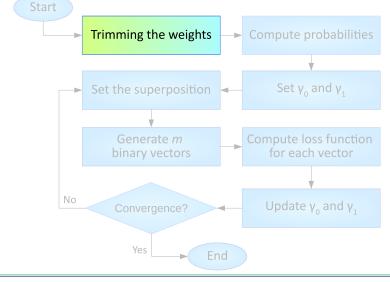
The gradient of L

$$g(w) = -A^{\top} \operatorname{sign}(y - Aw).$$





## Quantum rounding at a glance (continued)





SHOW IS

SDSS 2018 - Data Science at NISS - Luca Sartore

## Step 1: Trimming the weights

- The weights that do not satisfy given constraints are trimmed and all the others are truncated.
- Update the weights

$$w_i = egin{cases} 1, & ext{if } w_i^* < 1, \ \lfloor w_i^* 
floor, & ext{if } 1 \leq w_i^* < 6, \ 6, & ext{if } w_i^* \geq 6, \end{cases}$$

where  $w_i^*$  represents the *i*-th DSE weight.

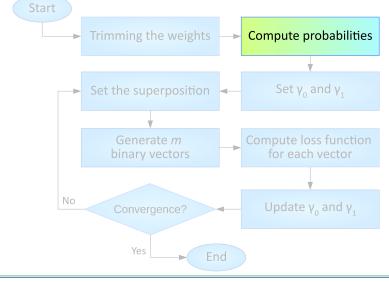
In our example

$$w^* = (2.3, 5.1, 7.9)^\top$$
  
 $w = (2, 5, 6)^\top$ 





## Quantum rounding at a glance (continued)





SDSS 2018 - Data Science at NISS - Luca Sartore

#### Step 2: Compute probabilities

A qubit  $|\Psi_i\rangle$  is initialized as  $|\Psi_i\rangle = \sqrt{1 - p_i}|0\rangle + \sqrt{p_i}|1\rangle$ , where the initial probabilities are computed as

$$p_i = egin{cases} g_{(1)}^{-1} g_i(w^* - w), & ext{if } g_i < 0 ext{ and } 0 < w^* - w < 1, \ 0, & ext{otherwise}, \end{cases}$$

where  $g_{(1)}^{-1}$  denotes the inverse of the smallest component of the gradient,  $g_i$  represents the *i*-th component of the gradient, for any i = 1, ..., n.

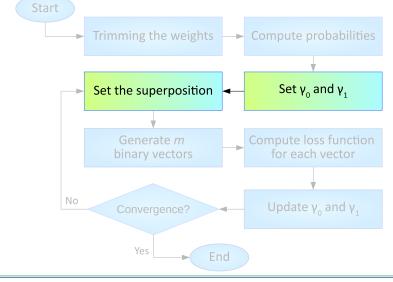
#### In our example

$$egin{aligned} g &= (-7, \ -5, \ -9)^{ op} \ w^* - w &= (0.3, \ 0.1, \ 0)^{ op} \ p &= (0.23, \ 0.06, \ 0)^{ op} \end{aligned}$$





#### Quantum rounding at a glance (continued)





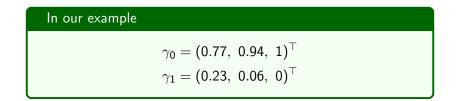


Step 3 & 4: Stable setting of  $\gamma_0$  and  $\gamma_1$ 

• The quantities  $\gamma_{0i} = 1 - p_i$  and  $\gamma_{1i} = p_i$  are set so that

$$p_i = \frac{\gamma_{1i}}{\gamma_{0i} + \gamma_{1i}}.$$

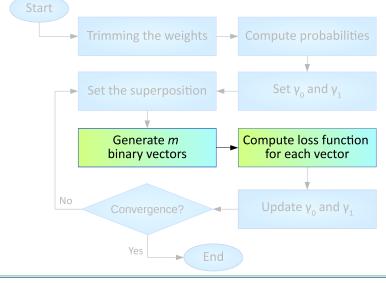
► These two values, *γ*<sub>0i</sub> and *γ*<sub>1i</sub>, will be updated at each iteration.







## Quantum rounding at a glance (continued)





#### Step 5 & 6: Observing the quantum state

- ➤ *m* binary vectors x<sub>j</sub> are generated by observing the quantum states of the qubits j = 1,..., m.
- The performance of these vectors is evaluated by a loss function L<sub>j</sub> associated to x<sub>j</sub>.

#### In our example

The measurements (with m = 5) and their losses are

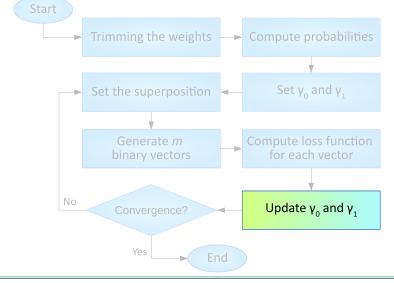
$$\begin{array}{ccc} x_3 = (1,0,0)^{\top} & \rightarrow & L_3 = 12 \\ x_4 = (1,1,0)^{\top} & \rightarrow & L_4 = 7 \end{array}$$

$$x_5 = (0,0,0)^\top \qquad \rightarrow \qquad L_5 = 19$$





## Quantum rounding at a glance (continued)





× Co

SDSS 2018 - Data Science at NISS - Luca Sartore

Step 7: Updating the probabilities via  $\gamma_0$  and  $\gamma_1$ 

$$\begin{split} \gamma_{0i}^{[\tau+1]} &\leftarrow \gamma_{0i}^{[\tau]}(1-\lambda) + \lambda \sum_{j=1}^{m} (1-x_{ji}) \left(\frac{L_{(m)} - L_{j}}{L_{(m)} - L_{(1)}}\right)^{2}, \\ \gamma_{1i}^{[\tau+1]} &\leftarrow \gamma_{1i}^{[\tau]}(1-\lambda) + \lambda \sum_{j=1}^{m} x_{ji} \left(\frac{L_{(m)} - L_{j}}{L_{(m)} - L_{(1)}}\right)^{2}, \end{split}$$

where

- L<sub>(1)</sub> denotes the minimum loss associated with the best fit,
- >  $L_{(m)}$  represents the maximum loss associated with the worst fit,
- the scalar  $\lambda \in [0, 1]$  is used to speed-up convergence.

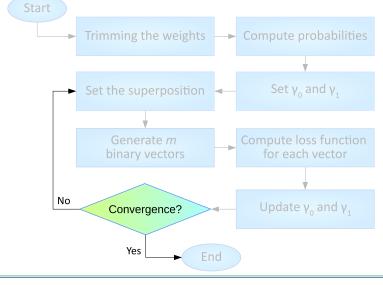
#### In our example

For 
$$\lambda = 0.5$$
,  
 $\gamma_0 = (0.38, 0.81, 1.34)^{\top}$ , and  $\gamma_1 = (0.96, 0.53, 0)^{\top}$   
 $p = (0.71, 0.39, 0)^{\top}$ 





## Quantum rounding at a glance (continued)





SDSS 2018 - Data Science at NISS - Luca Sartore



## Step 8: Convergence

These operations are iterated until convergence is achieved.

$$\gamma_{1i}/(\gamma_{0i} + \gamma_{1i}) \to 0 \implies w_i = \lfloor w_i^* \rfloor$$
$$\gamma_{1i}/(\gamma_{0i} + \gamma_{1i}) \to 1 \implies w_i = \lceil w_i^* \rceil$$

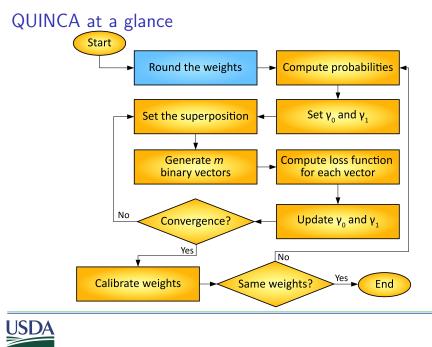
#### In our example

The probabilities  $p \approx (1,1,0)^{\top}$ , so the vector of rounded weights is

$$w + p = \begin{pmatrix} 2\\5\\6 \end{pmatrix} + \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 3\\6\\6 \end{pmatrix}$$









#### The calibration setting

- Final integer weights are computed iteratively by unit adjustments according to the sign of the gradient.
- The feasible steps are computed by  $s \odot x$ .
- ► The components of the vector s satisfy the equality s<sub>i</sub> = -sign(g<sub>i</sub>) and those of x are generated by measuring the status of the qubits |Ψ<sub>i</sub>⟩, for any i = 1,..., n.

#### In our example

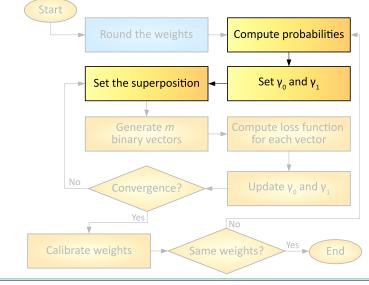
The new gradient g and the vector s are

$$egin{array}{lll} g = (-6, & -4, & -8)^{ op} \ s = (1, & 1, & 1)^{ op} \end{array}$$





## QUINCA at a glance (continued)







SDSS 2018 - Data Science at NISS - Luca Sartore

#### Step 1: Qubits initialization

Qubits  $|\Psi_i\rangle$  are initialized to take into account only for feasible adjustments in the opposite direction of the gradient; i.e.

$$p_i = \begin{cases} 0, & \text{if } g_i > 0 \text{ and } w_i < 2, \\ 0, & \text{if } g_i < 0 \text{ and } w_i > \lfloor u_i \rfloor - 1, \\ |g_i| / \max\left(|g_{(1)}|, |g_{(n)}|\right), & \text{otherwise.} \end{cases}$$

These are used to initialize  $\gamma_0$  and  $\gamma_1$ .

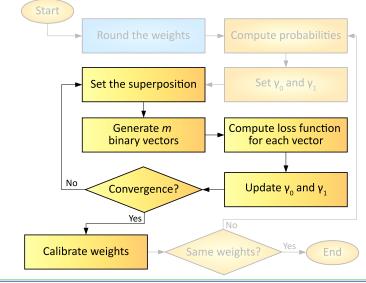
#### In our example

$$p = (0.75, 0, 0)^{\top}$$
  
 $\gamma_0 = (0.25, 1, 1)^{\top}$   
 $\gamma_1 = (0.75, 0, 0)^{\top}$ 





## QUINCA at a glance (continued)





South and a state of the state

SDSS 2018 - Data Science at NISS - Luca Sartore

## Step 2: Quantum adjustments

- ► The performance of the *m* binary vectors is evaluated by the loss function L<sub>j</sub>, for any j = 1,..., m.
- $\gamma_0$  and  $\gamma_1$  are updated as in the rounding algorithm.
- ▶ When the ratio  $\gamma_{1i}/(\gamma_{0i} + \gamma_{1i})$  converges,  $w_i \leftarrow w_i + s_i \hat{x}_i$ , where

$$\hat{x}_i = egin{cases} 0, & ext{if } \gamma_{0i} > \gamma_{1i} \ 1, & ext{otherwise.} \end{cases}$$

#### In our example

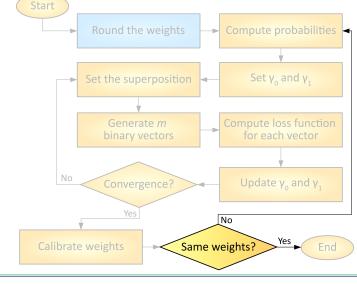
The probabilities  $p \approx (1, 0, 0)^{ op}$ , therefore

$$w + s \odot p = \begin{pmatrix} 3 \\ 6 \\ 6 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \odot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix}$$





## QUINCA at a glance (continued)





SHICULARE 34

SDSS 2018 - Data Science at NISS - Luca Sartore

## Step 3: Convergence

- At each iteration the gradient is updated and a new set of probabilities are computed to initialize the qubits.
- ▶ The quantum calibration algorithm terminates when the ratio  $\gamma_{1i}/(\gamma_{0i} + \gamma_{1i}) \rightarrow 0$  for any i = 1, ..., n.

#### In our example

The optimal solution was found in  $\hat{w} = c(4,6,6)^{\top}$  with a final loss of 2. No further adjustments are needed.





## PART III APPLICATION

- 6. Simulation study
- 7. Concluding remarks





## A simulation study

1) The data

- 150 weights  $\omega_i \sim \text{Gamma}(3.333, 1)$ .
- A  $201 \times 150$  matrix A is simulated such that

$$a_{ki} = egin{cases} 1, & ext{if } k = 1, \ b_{ki}c_{ki}, & ext{otherwise,} \end{cases}$$

where  $b_{ki} \sim \text{Bernoulli}(0.3)$  and  $c_{ki} \sim \text{Poisson}(4)$ .

- Calibration benchmarks are computed as  $y = A\omega$ .
- DSE weights are simulated from a U(0, 7.5).
- Final weights are restricted such that  $\hat{w}_i \in [1, 6]$ .





## A simulation study (continued)

2) The loss function and its gradient

The loss function is

$$L_{j} = \sum_{k=1}^{201} \left| y_{k} - \sum_{i=1}^{150} a_{ki} w_{i} \right|,$$

and its gradient is

$$g_i = -\sum_{k=1}^{201} \operatorname{sign}(\varepsilon_k) a_{ki},$$

where 
$$\varepsilon_j = y_k - \sum_{i=1}^{150} a_{ki} w_i$$
.





## A simulation study (continued)

3) The setting for the experiments

Investigating the performance of the algorithm with respect to

- number of measurements  $m \in \{64, 101, 161, 256\}$ ,
- learning rate  $\lambda \in \{0.50, 0.60, 0.69, 0.75\}$ .

The simulated vector of the DSE weights is the same for all the combinations of *m* and λ.





## A simulation study (continued)

4) The results

Table: Final loss after QUINCA

| Number of    | Learning Rate |      |      |      |  |
|--------------|---------------|------|------|------|--|
| Measurements | 0.50          | 0.60 | 0.69 | 0.75 |  |
| 64           | 1588          | 1532 | 1529 | 1437 |  |
| 101          | 1498          | 1362 | 1403 | 1330 |  |
| 161          | 1585          | 1402 | 1468 | 1431 |  |
| 256          | 1610          | 1590 | 1343 | 1327 |  |

Table: Elapsed time in seconds

| Number of    | Learning Rate |       |       |       |  |
|--------------|---------------|-------|-------|-------|--|
| Measurements | 0.50          | 0.60  | 0.69  | 0.75  |  |
| 64           | 0.75s         | 0.59s | 0.82s | 0.67s |  |
| 101          | 1.74s         | 2.37s | 1.61s | 1.30s |  |
| 161          | 2.99s         | 3.27s | 2.28s | 3.04s |  |
| 256          | 3.19s         | 2.35s | 6.03s | 5.02s |  |





## Concluding remarks

- QUINCA is a *preliminary* improvement of INCA.
- The proposed methodology performs a quantum search that, by design, overcomes the limitations of INCA and finds better vectors of integer calibrated weights.
- QUINCA adjusts the weights by performing multidimensional steps and has the potential of converging *heuristically* to a global solution.
- Future research can exploit quantum entanglement to move towards a global solution in one step.





#### Selected References

- Barnett, S. (2009). Quantum information, volume 16. Oxford University Press.
- Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. (2006). *Algorithms*. McGraw-Hill, Inc.
- Grover, L. and Rudolph, T. (2002). Creating superpositions that correspond to efficiently integrable probability distributions. *arXiv preprint quant-ph/0208112*.
- Koenker, R. (2005). *Quantile regression*. Cambridge University Press, New York.
- Sartore, L. and Toppin, K. (2016). *inca: Integer Calibration*. R package version 0.0.2.
- Sartore, L., Toppin, K., Young, L., and Spiegelman, C. (2018). Developing integer calibration weights for Census of Agriculture. *Journal of Agricultural, Biological and Environmental Statistics*, Accepted.
- Young, L. J., Lamas, A. C., and Abreu, D. A. (2017). The 2012 Census of Agriculture: a capture–recapture analysis. *Journal of Agricultural, Biological and Environmental Statistics*, 22(4):523–539.





# Thank you!

Questions?

Luca Sartore, PhD

lsartore@niss.org luca.sartore@nass.usda.gov





SDSS 2018 - Data Science at NISS - Luca Sartore