Online Program Home
  My Program Register!

Abstract Details

Activity Number: 83
Type: Invited
Date/Time: Sunday, July 30, 2017 : 8:30 PM to 10:30 PM
Sponsor: IMS
Abstract #324098
Title: Generalized Fiducial Inference for High-Dimensional Data
Author(s): Jan Hannig* and Jonathan P Williams
Companies: University of North Carolina at Chapel Hill and University of North Carolina at Chapel Hill

Standard penalized methods of variable selection and parameter estimation rely on the magnitude of coefficient estimates to decide which variables to include in the final model. However, coefficient estimates are unreliable when the design matrix is collinear. To overcome this challenge an entirely new method of variable selection is presented within a generalized fiducial inference framework. This new procedure is able to effectively account for linear dependencies among subsets of covariates in a high-dimensional setting where $p$ can grow almost exponentially in $n$.

It is shown that the procedure very naturally assigns small probabilities to subsets of covariates which include redundancies by way of explicit $L_{0}$ minimization. Furthermore, with a typical sparsity assumption, it is shown that the proposed method is consistent in the sense that the probability of the true sparse subset of covariates converges in probability to 1 as $n \to \infty$ and $p \to \infty$. Very reasonable conditions are needed, and little restriction is placed on the class of $2^{p}$ possible subsets of covariates to achieve this consistency result.

Authors who are presenting talks have a * after their name.

Back to the full JSM 2017 program

Copyright © American Statistical Association