Hierarchical models for combining N-of-1 trials

Christopher Schmid

Brown University School of Public Health
Department of Biostatistics

ICHPS
11 January 2018
Grants Funding this Work

- **N-of-1 Trials Using mHealth in Chronic Pain**
 National Institute of Nursing Research R01 NR13938

- **Using Single Subject (N-of-1) Designs to Answer Patient-Identified Research Questions**
 PCORI ME-16

- **Combining N-of-1 Trials to Assess Fibromyalgia Therapies**
 National Institute of Arthritis and Musculoskeletal and Skin Diseases R01 AR45416

Joint work with Youdan Wang and members of the PREEMPT study
Outline

- Motivation for N-of-1 trials
- Design
- Analysis
- Combining N-of-1 trials
- Networks of N-of-1 Trials
- Example
- Ongoing Work
Heterogeneity of Treatment Effects

- Center based RCTs give average effects but
- Average effects may not (and in some cases, demonstrably do not) apply to the individual patient
Heterogeneity from a Crossover Trial

- Crossover trial with 19 patients treated for fibromyalgia (Goldenberg, 1996)
- Patients treated with combination of AM + FL did better than on either treatment alone
- But not all patients responded
- Improvement of $>25\%$ compared to baseline in:
 - 5\% Placebo
 - 24\% AM
 - 32\% FL
 - 62\% AM+FL
N-of-1 Trials

- Single patient multiple period blocked crossover trials to estimate individual treatment effects
- Personalized protocol (personalized medicine)
 - Clinician and patient can design own study
 - Can select own (multiple) outcomes
 - Patients have more control over study design
- Multiple measurements per period
- Potential missing data
- Compare measurements in A periods with those in B periods
Indications

- Substantial therapeutic uncertainty about treatment
- Measureable, easily collected outcomes
- Heterogeneous treatment effects
- Stable chronic condition
- Short-acting treatments with rapid ramp-up
- Negligible persistence of treatment effect (no carryover)
- Outcome expected to return to baseline after each period

Kravitz and Duan (2014), AHRQ
Key Design Elements

- Pairing within patient
- Randomization or systematic counterbalanced design (AB/BA)
 - Usually each treatment once in each block
- Blinding
- Replication to assess within and between period variability
 - Number of study periods, number of measurements per period
 - Patients may not finish their protocol
- Washout period to control for carryover effects
 - May not be practical or ethical and may compromise design
 - Carryover hard to estimate unless many crossovers
 - Can downweight first measurements after each crossover

Schmid and Duan (2014), AHRQ
Examples of N of 1 Studies

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sponsor</th>
<th>Outcome</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibromyalgia</td>
<td>NIH</td>
<td>Impact scale</td>
<td>AM vs. AM + FL</td>
</tr>
<tr>
<td>ADHD</td>
<td>Australia</td>
<td>Sleep (kids)</td>
<td>Melatonin vs. None</td>
</tr>
<tr>
<td>Chronic Pain</td>
<td>NIH</td>
<td>Various</td>
<td>Various</td>
</tr>
<tr>
<td>IBD</td>
<td>PCORI</td>
<td>Various</td>
<td>Strict vs. relaxed diet</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>PCORI</td>
<td>Episodes</td>
<td>Trigger vs. no trigger</td>
</tr>
<tr>
<td>Behavioral</td>
<td>WNYC</td>
<td>Various</td>
<td>Various</td>
</tr>
</tbody>
</table>
PREEMPT Study: Design

- Compares N-of-1 trials versus usual care for treating adults with chronic musculoskeletal pain
- 215 patients equally randomized
- Outcomes: Pain, Quality of life, Participatory decision making, Satisfaction, Trust, Adherence

Barr et al 2015, Trials
PREEMPT N-of-1 Study Arm Protocol

- Develop mobile application to conduct N-of-1 trials (108 patients)
- Compare 2 interventions within each patient
 - 1-2 week treatment periods
 - Cycle of 2 periods (2 to 4 weeks long, AB or BA)
 - Study of 2-4 cycles (4-16 weeks)
- Outcomes examined: pain, fatigue, drowsiness, sleep problems, cognitive function, constipation
- Choice of treatments by patient/clinician
- Measured daily by self-report
- Most are categorical, but pain treated as continuous
PREEMPT Treatments

- No treatment
- Tylenol (acetaminophen)
- NSAID (e.g., ibuprofen, naproxen, sulindac)
- Opiates
 - Codeine, tramadol, hydrocodone, oxycodone
 - Often in combination pill form with NSAID
- Non-pharmaceutical (self and professionally administered)
 - Complementary and alternative (e.g., yoga, massage)
 - Physical therapy
 - Exercise

Many patients also already on treatments that continue
N-of-1 Data Structure

- Structured time series with treatment factor
- Time trends and time-varying treatment effects
- Carryover
- Correlation
Basic N-of-1 Models

Treatment Effect Model

\[y_j = \mu + \delta z_j + \epsilon_j; \quad j = 1, 2, \ldots, J \]

\[\epsilon_j \sim N(0, \sigma^2) \]

\(y_j \): measurement \(j \) for outcome \(y \)

\(z_j \): treatment indicator; \(z_j = 1 \) if tx B and 0 if tx A
Basic N-of-1 Models

Treatment Effect Model

\[y_j = \mu + \delta z_j + \epsilon_j; j = 1, 2, \ldots, J \]
\[\epsilon_j \sim N(0, \sigma^2) \]

Treatment and Linear Time Trend Model

\[y_j = \mu + \delta z_j + \beta t_j + \epsilon_j; j = 1, 2, \ldots, J \]
\[\epsilon_j \sim N(0, \sigma^2) \]

\(t_j \): time of \(j \)th measurement
Basic N-of-1 Models

Treatment Effect Model

\[y_j = \mu + \delta z_j + \epsilon_j; j = 1, 2, \ldots, J \]
\[\epsilon_j \sim N(0, \sigma^2) \]

Treatment and Linear Time Trend Model

\[y_j = \mu + \delta z_j + \beta t_j + \epsilon_j; j = 1, 2, \ldots, J \]
\[\epsilon_j \sim N(0, \sigma^2) \]

Treatment and Linear Time Trend and Correlated Error Model

\[y_j = \mu + \delta z_j + \beta t_j + \epsilon_j; j = 1, 2, \ldots, J \]
\[\epsilon_j = \rho \epsilon_{j-1} + u_j \]
\[u_j \sim N(0, \sigma^2) \]
Model for Single N-of-1 Trial

\[y_j = \mu + \delta z_j + F(t_j) + \epsilon_j; \ j = 1, 2, \ldots, J \]
\[\epsilon_j = \epsilon_{j-1} + u_j \]
\[u_j \sim N(0, \sigma^2) \]

\(F(t_j) \): Time trend e.g. \(F(t_j) = B(t_j)\gamma = \sum_{m=1}^{M} \gamma_m B_m(t_j) \) is spline
Rationale for Using Bayesian Models

- Personalized nature of decision
- Need to incorporate external information (patient, clinician)
- Interpretation of probability that one treatment better than other
- Lack of sufficient data for standard methods to return 'significant' result
- Joint posterior distribution for composite statements about multiple outcomes
- Can also combine multiple N-of-1 studies together to get both average treatment effect and better individual treatment effects through borrowing of strength
Extension to Multiple N-of-1 Trials

\[y_{ij} = \mu_i + \delta_i z_{ij} + F(t_{ij}) + \pi z_{i(j-u)}, z_{ij} + \epsilon_{ij} \]

\[\epsilon_{ij} = \rho \epsilon_{i(j-1)} + u_{ij} \]

\[u_{ij} \sim N(0, \sigma^2) \]

\[i = 1, \ldots, N; j = 1, 2, \ldots, J_i \]
Extension to Multiple N-of-1 Trials

\[y_{ij} = \mu_i + \delta_i z_{ij} + F(t_{ij}) + \pi_{z_{i(j-u)},z_{ij}} + \epsilon_{ij} \]

\[\epsilon_{ij} = \rho \epsilon_i (j-1) + u_{ij} \]

\[u_{ij} \sim N(0, \sigma^2) \]

\[i = 1, \ldots, N; j = 1, 2, \ldots, J_i \]

\(\pi_{z_{j-u},z_j} \): Carryover lasts for \(U \) time units after changing treatment

\(F(t_j) \): Time trend e.g. \(F(t_j) = B(t_j)\gamma = \sum_{m=1}^{M} \gamma_mB_m(t_j) \) is spline
Extension to Multiple N-of-1 Trials

\[y_{ij} = \mu_i + \delta_i z_{ij} + F(t_{ij}) + \pi_{z_{i(j-u)},z_{ij}} + \epsilon_{ij} \]

\[\epsilon_{ij} = \rho \epsilon_{i(j-1)} + u_{ij} \]

\[u_{ij} \sim N(0, \sigma^2) \]

\[i = 1, \ldots, N; j = 1, 2, \ldots, J_i \]

\(\pi_{Z_{j-u},Z_j} \): Carryover lasts for \(U \) time units after changing treatment

\(F(t_j) \): Time trend e.g. \(F(t_j) = B(t_j)\gamma = \sum_{m=1}^{M} \gamma_m B_m(t_j) \) is spline

- Random effect for \(\delta_i \), e.g., \(\delta_i \sim N(d, \sigma^2_\delta) \)
- Fixed or random effect for \(\mu_i \)
- \(\pi_{z_{i(j-u)},z_{ij}}, \rho \) constant across patients
- Can estimate carryover effect across patients
- May want to use common within-patient variance \(\sigma^2_i = \sigma^2 \)
Multilevel Model Combining N-of-1 Studies

- Consider each N-of-1 trial as a study and combine via meta-analysis
- Population estimate of treatment efficacy, d
- Improved estimates for individuals by borrowing strength δ_i
- Including covariates enables subgroup estimates
- Compromise between population estimate (complete pooling) and individual’s observed results (no pooling)
 - Weighted to observed if low variation or many crossovers
 - Weighted to pooled (or subgroup) if little information for individual
- Helps make treatment decision if individual outcomes equivocal
- May also permit more complex modeling of short series

Network With Patient Chosen Treatment Comparisons

<table>
<thead>
<tr>
<th>Treatment A</th>
<th>Treatment B</th>
<th>Concomitant Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naproxen 1000 mg</td>
<td>None</td>
<td>Hydrocodone 40 ME, Acet. 2600 mg</td>
</tr>
</tbody>
</table>
Expanded Network Using Concomitant Treatments
Network Meta-Analysis

- Combine direct + indirect estimates of multiple treatment effects
- Internally consistent set of estimates that respects randomization
- Estimate effect of each intervention relative to every other whether or not there is direct comparison in studies
- Calculate probability that each treatment is most effective
- Compared to conventional pair-wise meta-analysis:
 - Greater precision in summary estimates
 - Ranking of treatments according to effectiveness or safety

Lu and Ades (2006, JASA)
N-of-1 Network Data Structure
\(\mathcal{R} = \{1, 2, \ldots, K\} \) : complete treatment set
\(\mathcal{R}_i = \{r_{i1}, \ldots, r_{ik_i}\} \): treatment set for patient \(i \)
\(r_{i1} \): base treatment for patient \(i \)
\(k_i \): total number of treatments for patient \(i \)
Extension to Network of N-of-1 Trials

\[y_{ij} = G(Z_{ij}) + F(t_{ij}) + \pi z_{i(j-u),z_{ij}} + \alpha y_i(j-1) + \epsilon_{ij}, \quad i = 1, \ldots, N; \quad j = 1, 2, \ldots, J \]

where

\[G(Z_{ij}) = \begin{cases} \mu_i & \text{if } z_{ij} = r_{i1}, \\ \mu_i + \delta_{i,r_{i1}z_{ij}} & \text{if } z_{ij} \succ r_{i1}, \end{cases} \]

\[\delta_i = \left(\delta_{i,r_{i1}r_{i2}}, \ldots, \delta_{i,r_{i1}r_{ik}} \right) \sim N \left(P_i \Delta, P_i \Sigma P_i^T \right) \]

\[\Delta = (d_{r_1 r_2}, \ldots, d_{r_1 r_K}) \]

Under consistency,

\[d_{r_{ij}r_{ij'}} = d_{1r_{ij'}} - d_{1r_{ij}} \]

with \(d_{11} = 0 \) and \(\Sigma \) is a matrix often simplified to have constant variances on the diagonal and a correlation of 0.5 satisfying the consistency equations.
Results: Network Meta-Analysis Basic Treatment Effects

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2.5</th>
<th>50</th>
<th>97.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-1.56</td>
<td>0.83</td>
<td>3.66</td>
</tr>
<tr>
<td>3</td>
<td>-1.87</td>
<td>1.06</td>
<td>4.41</td>
</tr>
<tr>
<td>4</td>
<td>-1.66</td>
<td>0.56</td>
<td>2.98</td>
</tr>
<tr>
<td>5</td>
<td>-3.56</td>
<td>-0.95</td>
<td>1.87</td>
</tr>
<tr>
<td>6</td>
<td>-4.64</td>
<td>-1.76</td>
<td>1.25</td>
</tr>
<tr>
<td>7</td>
<td>-5.60</td>
<td>-3.08</td>
<td>-0.59</td>
</tr>
<tr>
<td>8</td>
<td>-1.82</td>
<td>0.51</td>
<td>2.92</td>
</tr>
<tr>
<td>9</td>
<td>-1.16</td>
<td>1.08</td>
<td>3.38</td>
</tr>
<tr>
<td>10</td>
<td>-5.09</td>
<td>-2.78</td>
<td>-0.61</td>
</tr>
<tr>
<td>11</td>
<td>-3.40</td>
<td>-1.46</td>
<td>0.64</td>
</tr>
<tr>
<td>12</td>
<td>-3.33</td>
<td>-1.10</td>
<td>1.17</td>
</tr>
<tr>
<td>13</td>
<td>-4.58</td>
<td>-2.14</td>
<td>0.18</td>
</tr>
<tr>
<td>14</td>
<td>-2.99</td>
<td>-0.51</td>
<td>2.40</td>
</tr>
</tbody>
</table>
Results: Network Meta-Analysis Treatment Effects

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.91</td>
<td>1.10</td>
<td>0.60</td>
<td>-0.90</td>
<td>-1.74</td>
<td>-3.09</td>
<td>0.54</td>
<td>1.10</td>
<td>-2.78</td>
<td>-1.41</td>
<td>-1.10</td>
<td>-2.16</td>
</tr>
<tr>
<td>2</td>
<td>0.18</td>
<td>-0.31</td>
<td>-1.81</td>
<td>-2.66</td>
<td>-4.00</td>
<td>-0.37</td>
<td>0.18</td>
<td>-3.70</td>
<td>-2.33</td>
<td>-2.01</td>
<td>-3.08</td>
<td>-1.33</td>
</tr>
<tr>
<td>3</td>
<td>-0.50</td>
<td>-2.00</td>
<td>-2.84</td>
<td>-4.19</td>
<td>-0.56</td>
<td>0.00</td>
<td>-3.88</td>
<td>-2.51</td>
<td>-2.19</td>
<td>-3.26</td>
<td>-1.51</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1.50</td>
<td>-2.35</td>
<td>-3.69</td>
<td>-0.06</td>
<td>0.49</td>
<td>-3.39</td>
<td>-2.02</td>
<td>-1.70</td>
<td>-2.77</td>
<td>-1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.85</td>
<td>-2.19</td>
<td>1.44</td>
<td>1.99</td>
<td>-1.89</td>
<td>-0.52</td>
<td>-0.20</td>
<td>-1.27</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.35</td>
<td>2.29</td>
<td>2.84</td>
<td>-1.04</td>
<td>0.33</td>
<td>0.65</td>
<td>-0.42</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.63</td>
<td>4.18</td>
<td>0.31</td>
<td>1.68</td>
<td>1.99</td>
<td>0.93</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.55</td>
<td>-3.33</td>
<td>-1.96</td>
<td>-1.64</td>
<td>-2.71</td>
<td>-0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-3.88</td>
<td>-2.51</td>
<td>-2.19</td>
<td>-3.26</td>
<td>-1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.37</td>
<td>0.62</td>
<td>2.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.32</td>
<td>-0.75</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-1.07</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.75</td>
<td></td>
</tr>
</tbody>
</table>
Density Plots for Six Patients who compared high dose NSAIDs vs. acetaminophen
Meta-Analysis vs Individual Analysis

![Graph showing treatment effects and subject IDs]

- Treatment A better
- Treatment B better

Christopher Schmid
11 January 2018
Posterior Probabilities of Six Patients from Meta-Analysis

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Probability</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>B better (large)</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>B better (modest)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>B better (small)</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>Unnoticeable</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>A better (small)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>A better (modest)</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>A better (large)</td>
</tr>
</tbody>
</table>

Group colors:
- B better (large) in purple
- B better (modest) in pink
- B better (small) in green
- Unnoticeable in yellow
- A better (small) in light green
- A better (modest) in medium green
- A better (large) in dark green
Ongoing Work

- Categorical outcomes
- Inconsistency models
- Missing data
- Simulations
- Improved computing
- Software
Thank you!