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Abstract 
The Occupational Requirements Survey (ORS), conducted by the Bureau of Labor Statistics (BLS) 
under contract to the Social Security Administration (SSA), collects data on the requirements of 
work at a detailed occupation level for the overall U.S. civilian economy. BLS and SSA are 
interested in developing a real-time query system to provide summary tables for the users and 
researchers. Although ORS is not an establishment survey, the survey data are subject to the risk of 
disclosing the identifiers of participating establishments if they have some almost unique 
occupations or their employees consist of a dominantly large proportion of an occupation. A 
“bottom-up” differential privacy approach was proposed to reduce the risk associated with the 
published tables from the ORS query tool. A hypercube would be created by cross-tabulating 
occupation and all work requirements variables, for which noise will be generated from a 
differentially-private algorithm, adjusted by average quote weight, and added to the records in the 
hypercube. The hypercube serves as the input data to the query tool. The tables requested by the 
users will be created by aggregating corresponding records in the hypercube. The hypercube can 
also be calibrated to the control totals derived from the original ORS data (or with small amount of 
noise added) at high aggregation levels to reduce the variance of the aggregated noise. For variance 
estimation, a formula is provided to accommodate both sampling error and perturbation error. 
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1. Introduction 

The Occupational Requirements Survey (ORS) is conducted by the Bureau of Labor 
Statistics (BLS) under contract to the Social Security Administration (SSA). It collects 
information on the requirements of work at a detailed occupation level for the U.S. 
economy including physical and mental requirements, as well as education and trainings. 
The ORS data contain a national probability sample of establishments and occupations, 
mainly using the Quarterly Census of Employment and Wages (QCEW) to construct the 
sampling frame. The sample was selected using a two-stage stratified design, where in the 
first stage establishments were sampled using a probability proportional to the number of 
employees in the establishments, and in the second stage, occupations were selected from 
the sampled establishments. 
 
In this paper, a methodology was proposed for developing a real-time query system with 
underlying ORS microdata to satisfy the needs of BLS and SSA. In the query tool, users 
can submit requests of weighted tabulations defined by the Standard Occupational Codes 
(SOC) of establishments and one or more job requirements. The results of estimated total 
employments and associated standard errors will be displayed within the table cells shortly 
after the submission. 
 



BLS is mandated to protect the confidentiality of their survey respondents. One of such 
laws is the Confidential Information Protection and Statistical Efficiency Act of 2002 
(CIPSEA). BLS often used certain threshold rules to determine if an estimate is publishable 
when they release statistical tables. The threshold rules can be based on weighted or 
unweighted cell frequencies, as well as precision measures such as coefficient of variations. 
The goal is to achieve the balance between confidentiality protection and the retention of 
analytic utility.  
 
The vulnerability in the published ORS estimates mainly comes from the 6-digit 
occupation code, which may indirectly reveal the identities of establishments. The 2018 
SOC system (https://www.bls.gov/soc/2018/soc_2018_user_guide.pdf) contains more 
than 800 detailed occupations. Information known by the user about a specific job code is 
either well known, or can be inferred from the Quarterly Census of Employment and Wages 
(QCEW) and the Occupational Employment Statistics (OES). The information could be 
comprised of a company being the only organization with those jobs, or the company being 
very dominating in size. The job requirements variables were not considered indirectly 
identifying. Instead, they were treated as the sensitive attributes of establishments. Once 
intruders identify a specific establishment through an occupation code, they will know all 
of the associated job requirements of that establishment.  
 
The potential risk attacks include creating slivers through either direct or indirect 
approaches. The table cells of very small sample sizes are subject to high risk, especially 
for sample uniques. Intruders may isolate a data subject by taking differences between 
tables or linking table with common variables. They may also match the published results 
to external information through probabilistic record linkage. 
 

2. Differential Privacy 

We proposed a solution of reducing the risk by adding noise to ORS estimates through the 
differential privacy mechanism before displaying results in the query system. With noise 
being added, the threshold rules will be relaxed and more ORS estimates become 
publishable. There are two options for adding noise: (1) using an interactive approach for 
which perturbation will be applied on the fly within the query tool and perturbation is 
conditional on query specification; (2) using a bottom-up approach for which perturbation 
can be applied to the most detailed table during data preparation and the perturbed table 
will be aggregated to generate all the other queried tables. The bottom-up approach was 
chosen because it satisfies three important properties of a data query tool as follows, 
whereas the interactive approach may violate table additivity.  
 

 Cell consistency – Across multiple users, if the same set of records contribute to a 
table cell, the same results are attained; 

 Query consistency – Across multiple users using the same query path (e.g., same 
specification for universe definition and requested table), the same results are 
attained; 

 Additivity – The sum of results from multiple tables is equal to the results directly 
arrived at for the aggregated table. 

 
Differential privacy is designed to protect against inferences about a unit whether it is in 
the dataset or not. After treatment, the data release close to zero information to public about 
a particular individual or contributes almost nothing to re-identification in terms of the 
mosaic effect (Pozen, 2005). This approach has been implemented to protect tabular data 



with whole population in companies such as Microsoft, and in the Census Bureau. There 
has been active research on this topic for different types of data and releases. 
 
Differential privacy makes the disclosure risk pre-determined and measurable. As defined 
in Dwork, et al. (2006) and Dwork and Roth (2014), a mechanism M satisfies 𝜀-differential 
privacy if for all neighboring lists a, a’ ∈ 𝐀 differing by one individual and all possible 
outputs b∈ 𝐁, we have the following likelihood ratio: 
 

𝑃(M(𝐚) = 𝐛)/𝑃(M(𝐚ᇱ) = 𝐛) ≤ 𝑒ఌ. 
 
This means that little can be learnt (up to a degree) by an intruder about the target individual 
that was dropped when moving from a to a’. In other words, the ratio is bounded and the 
probability in the denominator cannot be zero. Rinott, et al. (2018) proposed using a 
Laplace mechanism (McSherry, et al. 2007) and proved that this mechanism M for 
perturbation is 𝜀 -differentially private. Define a loss function: 
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 where a and a’ are neighboring databases that differ by 

removing one individual.  
 
Statistical agencies are concerned about utility when perturbation is applied. One way to 
ensure high utility in perturbed cell counts is to put a cap on how far away from the original 
cell counts that are allowed for the perturbation, which leads to the definition of ),(  - 

differential privacy where   is the probability of failing to perturb beyond the cap as 
follows, 
 

𝑃(M(𝐚) = 𝐛) ≤ 𝑒ఌ𝑃(M(𝐚ᇱ) = 𝐛) + δ. 
 

There is a tradeoff between the two parameters   and  .  
 
In principle, there are two ways of developing ),(  - differential privacy for survey 
weighted employment:  

 Perturbation carried out on unweighted cell employments and then the noise 
adjusted by a factor related to survey weights and added to original 
weighted cell employments;  

 Perturbation carried out on weighted cell employments. 

Rinott, et al. (2018) cite future work on applying differential privacy for weighted cell 
employment and suggest that in this case u  would be the maximum survey weight. This 
leads to low utility as the perturbation mechanism M would become quite uniform as 
opposed to exponential. Defining u  as the average survey weight (when there is little 
variability in the survey weights) yields a more exponential perturbation. It also leads to 



the case of perturbing the unweighted cell employments and then adjusting the perturbed 
unweighted cell employment through the overall average survey weight (Shlomo, Krenzke 
and Li, 2018). For example, if the perturbation led to ‘add +3 to the original unweighted 
cell employment’, we add 3 times the average survey weight to the original weighted cell 
employment. 
 

3. A Bottom-up Approach 

The flow chart in Figure 1 shows the basic steps of the bottom up approach. It first 
generates a hypercube from the microdata, then adds noise to the hypercube and control 
totals. The perturbed control totals are used to calibrate the perturbed hypercube. At the 
end the calibrated hypercube will be loaded to the query tool. More details are discussed 
for each step below. 
 

 
Figure 1. Work flow of the bottom-up approach 
 
3.1 Creation of Hypercube 
 
The hypercube is the full cross-tabulation of all the variables that are used to generate the 
ORS tables, i.e., the occupation code and various job requirements. If too many variables 
are involved or the variables have too many categories, a large number of cells in the 
crossed table will contain no sampled cases. In this case, a subsample of those empty 
cells can be dropped to control the size of the hypercube and save processing time in the 
next steps. As shown in Table 1, the hypercube cells contained the weighted and 
unweighted employment counts. 
 



Table 1: Structure of Hypercube 

Table 
Cell 

Occupation 
Code 

Require-
ment_1 

Require-
ment_2 … 

Require-
ment_n 

Unweighted 
Employment 

Weighted 
Employment 

1 100001 1 1  1 0 0 
2 100001 1 2  1 5 100 
3 100001 2 1  1 18 500 
4 100001 2 2  1 9 300 
5 100001 1 2  2 0 0 
… ……       

 
3.2 Perturbing Hypercube 
 
Next, noise was generated through a Laplace mechanism. With 2 , 1u  and a cap 
of 7 , the perturbation vector and associated probabilities are displayed in Table 2. In 
expectation, 76.2% of the unweighted counts in the hypercube do not change their values, 
10.3% of the unweighted counts in the hypercube increase or decrease by 1, etc. The 
unweighted counts can be changed by no more than 7. The   is then determined by the 
probability at the cap of 7 , which in this case is equal to 0.0000006. 
 

Table 2. Perturbation vector and associated probabilities for differential privacy with 
2 , 1u  and a cap of 7  

Perturbation Probability of Perturbation 
+/-7 0.0000006 
+/-6 0.0000047 
+/-5 0.0000346 
+/-4 0.0002555 
+/-3 0.0018878 
+/-2 0.013949 
+/-1 0.10307 

0 0.76159 
 
Table 3 illustrates how noise was added to cell estimates, or the weighted counts. Noise 
were generated from the distribution shown in Table 2 and added to the unweighted 
employment (in terms of number of quotes) in the hypercube to obtain the perturbed 
hypercube~. The perturbed weighted employment was calculated as the weighted 
employment plus the noise multiplied by average quote weight. 
 

Table 3. Hypercube~ 

Cell 
Unweighted 
Employment 

Weighted 
Employment 

Unweighted 
Noise 

Perturbed 
Unweighted 
Employment 

Perturbed 
Weighted 
Employment 

1 0 0 +1 1 𝑤ഥ  
2 5 100 0 5 100 
3 18 500 -2 16 500-2𝑤ഥ  
4 9 300 -1 8 300-𝑤ഥ  
5 0 0 0 0 0 
… ……     

Note: 𝑤ഥ  is the average survey weight. 
 



3.3 Calibrating Hypercube 
 
The estimates in the ORS query tool will be generated from aggregating the records in the 
hypercube~. As a result, the noise will be aggregated. The more records in the hypercube~ 
are aggregated for a query, the more noise is involved in the cell estimates. This is referred 
to as a “bottom-up” approach in Abowd (2019)1, where differential privacy is applied to a 
table at the most detailed level and all aggregations are built form this table. On the 
contrary, for a “top-down” approach, “differential privacy measurements are taken for 
tables all levels of details, then large-scale optimization problem is solved to allocate 
microdata records to solution tables respecting invariants, table consistency, non-
negativity, and integer constraints.” The “bottom-up” approach is easier to implement and 
retains table consistency and additivity, while the “top-down” approach, though technically 
more difficult, has a better control on the differential privacy parameters for tables at all 
levels. 
 
Calibration can be a remedy for the “bottom-up” approach to reduce the variation in noise 
for aggregated tables. To reduce the variability of the noise in low dimensional tables, 
which requires more aggregations, calibration can be done for hypercube~ to ensure that 
the noise is controlled at a lower level for select low dimensional table. For example, the 
hypercube~ can be post-stratified to the cell estimates of a three dimensional table formed 
by occupation, education, and prior work experience (other important requirement 
variables may be used as well). This three dimensional table will first be perturbed 
through the same algorithm as were done for hypercube~ with appropriate Laplace 
parameters. The calibrated hypercube is denoted by C_hypercube~. Calibration helps 
reduce the variation in noise added. To determine the set of control totals, one should 
consider important high-level tables and the amount of noise added. 
 
3.4 Building Query Tool 
 
When building the query tool, both the original hypercube and the calibrated perturbed 
hypercube need to be loaded to the system. The calibrated perturbed hypercube is used to 
calculate the weighted employment in queries. For example, refer to Tables 1 and 3, to 
calculate the weighted employment in a table cell defined by occupation = 100001 and 
requirement_1 = 1, simply sum up the perturbed weighted employment of the first two 
records in Table 1 and Table 3, which meet the conditions. The estimated weighted 
employment for the cell would be 100+𝑤ഥ . Overall, the records in the C_hypercube~ can 
be treated in the same way as any microdata records when calculating the weighted cell 
employments – but instead of using the weight as you would for microdata, use the 
perturbed weighted employment as the “weight” when basing the aggregations from the 
C_hypercube~.  
 
For variance estimation, perturbation error needs to be accounted for. The variance of 
original ORS estimates is estimated using the successive difference replication method. 
The variance estimator, developed to account for the additional variance due to 
perturbation, adds a term of squared difference between the original and perturbed 
estimates to the original variance as follows: 
 

var൫𝜃෨൯ = var(𝜃) + ൫𝜃෨ − 𝜃൯
ଶ
, 

                                                      
1 https://www2.census.gov/programs-surveys/decennial/2020/resources/presentations-

publications/2019-02-17-abowd-differential-privacy.pdf? 



 
where 𝜃 is the estimate from the original hypercube and 𝜃෨ is the estimate from perturbed 
hypercube. 
 
A post-perturbation assessment is a critical component of the disclosure limitation 
process. The assessment evaluates the impact of disclosure protection treatments on 
reducing risk and retaining data utility. It is important to verify that the perturbed data 
support valid statistical inference at a similar level to the original data. The assessment 
results can also be useful for selecting or fine-tuning the parameters of the Laplace 
mechanism used in the differential privacy technique. To measure the risk, we can check 
the number of cells that are changed from near zero to non-zero, and vice versa. The 
more of such changes, the more risk is reduced. To assess the change in utility, we can 
see how many previously suppressed estimates become publishable, and also check the 
differences in cell estimates and standard errors. Other common measures include 
Cramer’s V (Agresti, 2002), Hellinger’s distance, and confidence interval overlap (Karr 
et al., 2006). 
 

4. Evaluation 

To evaluate the impact of calibration on controlling the noise in mid- to high-dimensional 
tables, we conducted a small scale simulation study. With a test data of 182 cases, we built 
a hypercube with 17,280 cells using 10 table variables. Since the sample size is very small 
compared to the large number of cells in the hypercube, we chose 𝜀 = 7 and cap = +/-1 to 
avoid adding too much noise to the hypercube, which basically says, in expectation, noise 
of +/-1will be added to the cells with 23.5% chances. The variance of the noise is 0.00182. 
 
After noise was generated and applied to hypercube, we calibrated the perturbed estimates 
to control totals derived from original estimates in all one-way tables (there are 10 of them). 
We did not add noise to the control totals. The one-way tables only have two to five cells 
each and would most likely stay unchanged even if a perturbation mechanism were applied 
with the 𝜀 and cap specified above. In practice, it would be good to add noise with a lower 
value of 𝜀 so that these low-dimensional tables are protected.  
 
For this evaluation, the calibration was executed through raking the perturbed estimates to 
each set of the original control totals iteratively, until convergence was reached. To fully 
understand the impact of calibration on the variance of noise, we designed the evaluation 
in the format of simulation. Noise was added to the hypercube, independently, for 1,000 
times. In the calibration step, we raked the perturbed hypercube~ to each of the 10 one-
way tables and repeated this process for 10 times. If convergence was still not reached after 
10 cycles, we did not include this run in the summarized results (convergence may be 
reached if this process were repeated more than 10 times but we set the limit to 10 to save 
computational time). Among the 1,000 runs, 224 of them converged successfully. We 
calculated the variance of noise with and without calibration by different table dimensions 
(from 1 to 10) in each run, and then took the averages across the 224 runs.  
 
Table 4 shows that, as expected, calibration reduces the variances of noise more effectively 
in low-dimensional tables than in high-dimensional tables. Since all one-way original table 
estimates were used for calibration, the noise in the one-way tables generated from the 
calibrated perturbed hypercube was reduced to almost zero. Among all two-way tables, the 
variance of noise was reduced by 48.3% on average. The reduction in the variance of noise 
decreases to 19.3% among all three-way tables and to 5.4% among all four-way tables. The 



variances of noise were barely changed among all five-way through ten-way tables. It 
should be noted that the results in Table 4 indicates that variance reduction occurs in 
expectation, which does not mean that variance reduction will always occur in each of the 
224 runs. One of the goals of this evaluation was to see how much calibration would impact 
the mid-dimensional tables, which we assume may be the most common queried tables.  
 

Table 4. Reduction in Variances of Noise through Calibration by Table Dimensions  

Table 
dimension 

Variance of noise without 
calibration 

Variance of noise with 
calibration 

Variance 
reduction 

1 6.592 0.000 100.0% 
2 3.255 1.684 48.3% 
3 1.340 1.082 19.3% 
4 0.522 0.494 5.4% 
5 0.200 0.200 0.0% 
6 0.077 0.078 0.0% 
7 0.030 0.030 0.0% 
8 0.012 0.012 0.0% 
9 0.005 0.004 0.0% 
10 0.002 0.002 0.0% 

 
5. Summary and Conclusions 

As discussed in this paper, a non-interactive or bottom-up approach was proposed to build 
the ORS query tool because this approach can effectively reduce the disclosure risk as well 
as retaining the additivity property across tables. The bottom-up approach only allows us 
to set the amount of added noise at an overall level through the parameters of the Laplace 
algorithm. However, it is difficult to control the noise that is added to individual tables of 
different dimensions. The interactive differential privacy approach, or adding noise to each 
individual table based on its specification, may be considered if better data utility is desired, 
with high tolerance of losing table additivity. When implementing the bottom-up approach, 
it should be noted that if there are any changes to the microdata (e.g., adding new 
requirements variables, adding new sample cases), a new hypercube may need to be 
generated, perturbed, calibrated, and loaded to the query tool. Currently the ORS estimates 
are mostly weighted counts. More research is needed if means, proportions, or percentiles 
are of interest in the future. 
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