
 

 

Exploring the Effect of Time-Related Classification Errors on the 

Accuracy of Growth Rates in Business Statistics 
 

Arnout van Delden, Sander Scholtus and Joep Burger
1
 

 

Abstract 

Producing reliable, undisputed statistical figures is the backbone of national statistical institutes 

(NSIs). One of the core publications in official statistics are short-term indicators for the economic 

business cycle, such as the quarterly turnover growth of economic sectors. In a number of countries 

turnover growth is estimated from administrative data, such as value added tax data. The data based on 

administrative units need to be linked to statistical units and classified by economic activity code. 

Determining the correct economic activity is often difficult. One of the reasons is that statistical units 

often consist of multiple legal units and likewise consist of multiple administrative units. The current 

paper addresses the problem of estimating the accuracy of turnover growth rates, as affected by 

classification errors in industry code. It consists of two main parts. First, we describe an approach for 

estimating the effect of the time-related classification errors on growth rates given that we know the 

size of the classification errors. Second, we describe how we collected data to estimate the size of the 

time-related classification errors. We will show some explorations on the impact of those errors on the 

accuracy of the growth rates by means of bootstrap simulation. 
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1. Introduction 

Short-term indicators for the economic business cycle are an important part of the output of national 

statistical institutes (NSIs). One such indicator is the yearly growth rate of quarterly turnover by 

economic sector, that is published as part of the European STS regulation. It is crucial that NSIs know 

how accurate their estimated quarterly growth rates are, to be able to validate their estimates. 

 

Many countries base their turnover growth rates on administrative data or on a combination of 

administrative and survey data (Costanzo, 2011). The data are often linked to a general business 

register (GBR) that contains background information such as the economic activity code. The latter is 

used to produce output by economic sector. The economic activity code in the GBR is not always of a 

high precision (Christensen, 2008). This is due to a combination of reasons. One reason is that the 

statistical units may consist of multiple legal units (e.g. Struijs, 2015), and each legal unit has its own 

economic activity. A common procedure at statistical offices is then to estimate a main activity code 

for the statistical unit. Furthermore, NSIs often use administrative sources, such as chamber of 

commerce data, where companies register their economic activity codes. However that information 

may be erroneous or outdated when a company changes its activity but does not report this. Errors in 

the economic activity are especially expected for the smaller units within a GBR, as NSIs often do not 

have the means to check the data of all those smaller companies.  

 

Errors in the economic activity may affect the accuracy of the turnover growth rates per industry. It is, 

however, not straightforward to quantify this effect. Van Delden et al. (2015, 2016) developed an 

approach to quantify the effect of classification errors on level estimates. In the current paper we 

extend that approach to growth rate estimates. We address two main issues. First we describe an 

approach how we can estimate the effect of time-related classification errors on growth rates given that 

we know the size of the classification errors (Sections 2–4). Second, we describe how we collected 

data to estimate the size of the time-related classification errors (Section 5). We will show some 
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explorations on the impact of those errors on the accuracy of the growth rates by means of bootstrap 

simulation. 

 

2. Estimating the accuracy 

Consider a population of units (       ) that is divided into industries based on economic activity 

as derived in a GBR. Denote the total set of industries by      . Denote the variable year as   and 

denote the starting year of the computations as      and the following years as     ,     , etc.  

 

For each year  , each active unit (enterprise)   has an unknown true industry code   
    and an 

observed industry code  ̂ 
   , where          . The true and observed industry codes are kept 

constant during a year; this is called the coordinated industry code at Statistics Netherlands. Between 

31 December of year    and 1 January of year     , or generally between 31 December of year 

    and 1 January of year  , the true and observed industry codes are updated for the units that are 

present in both     and   (continuing units). 

 

Due to classification errors some of the observed industry codes may differ from the true ones. Those 

classification errors may affect the publication figures. In this paper, we consider the relatively simple 

case where classification errors are the only errors that occur. In particular, we assume that the target 

variable is observed for all units in the population. This can for instance be the case when 

administrative data are available, an example will be discussed in Section 5. 

 

We are interested in changes in quarterly turnover per industry. First denote the true turnover for 

industry         in quarter   of year   by   
   

 ∑    
   

       

   , where      stands for the size of the 

population in quarter   of year  ,   
   

 denotes the turnover of unit   in this quarter and    
  is a dummy 

variable with 

   
      

     {
      

    

      
    

 

Recall that    
  does not depend on   because the industry code is kept constant during the year. In 

practice,   
   

 is estimated by  ̂ 
   

 ∑  ̂  
   

       

   , with  ̂  
     ̂ 

    . In the remainder of the paper 

we use a single time index in the notation (thus either   or  ) unless both indices are needed to avoid 

confusion.  

 

We denote the change in turnover of quarter   to a previous quarter     as   
     

 
  

 

  
   , where 

    gives the change with respect to the previous quarter and     the change with respect to the 

same quarter in the previous year.   
     

 is estimated as  ̂ 
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   . The corresponding relative 

changes are expressed as   
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We would like to assess the bias and variance of  ̂ 
     

 as an estimator for   
     

, i.e., 
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In order to estimate this bias and variance we need to model the classification errors that occur in the 

GBR over time. In the remainder of this section we introduce such a model and discuss a bootstrap 

method to estimate (1) and (2). 

 

For the observed industry codes at the start of year     , we suppose that random classification 

errors occur, independently across units, according to a known (or previously estimated) transition 



 

 

matrix   
        

   , with     
    ( ̂ 

   |  
   ). In this notation superscript   stands for 

observed industry—conditional on the true value—and   stands for level (the cross-sectional 

situation). Note that we consider the true industry codes as fixed and the observed industry codes as 

stochastic, in line with, e.g., Kuha and Skinner (1997). We further assume that all newborn units in 

year                  } also have an observed industry code according to   
   in their first 

year, where the values of probabilities     
   are for the moment assumed to be independent of  . 

 

To model the time dependency of classification errors in the observed industry codes for continuing 

units, we introduce an additional transition matrix   
          

   , with 

      
    ( ̂ 

   |  
        

     ̂ 
     ). In this notation superscript   stands for change. 

Again, we assume that the probabilities       
   are constant across time. Some additional simplifying 

assumptions on the structure of   
   and   

   will be introduced below. The true and observed industry 

codes with their dependencies are shown in the left part of Figure 1. 
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Figure 1: Classification errors over time: reality versus bootstrap. 

 

Given the matrices   
   and   

   we can estimate the accuracy (bias and variance) of the growth rate  

 ̂ 
     

. In the present paper, likewise to Van Delden et al. (2016) and Burger et al. (2015), we use a 

bootstrap approach for this. We use a bootstrap, because we can then, in future, also include other non-

sampling errors besides classification errors, such as measurement, linkage, and coverage errors, as 

well as combinations thereof. Furthermore, we aim to investigate whether analytical expressions can 

be derived, using simplifying assumptions that approximate the bias and the variance. The results of 

those analytic expressions could then be compared with the bootstrap estimates to judge how well they 

perform. 

 

In the bootstrap approach, we start by simulating the situation of the first quarter     in year     . 

For     we apply the transition matrix   
  , as in Van Delden et al. (2016), to the observed   ̂ 

 , 

which results in a new industry assignment variable denoted by  ̂ 
   (see the right part of Figure 1). 

That is to say, we consider realisations of the alternative classification error model given by: 

 

 ( ̂ 
    | ̂ 

   )   ( ̂ 
   |  

   )      
            (3)  

 

For the other quarters in year   , each unit keeps the same industry code, thus  ̂ 
    . For any 

newborn units within year    also transition matrix   
   is applied to derive  ̂ 

  . Next, for the first 

quarter of the next year (      ,    ) we apply transition matrix   
   to obtain  ̂ 

   (with 

      ) given the values of  ̂ 
   ,  ̂ 

  and  ̂ 
     (see the right part of Figure 1). Thus, likewise to 

  
  , we consider realisations of the alternative classification error model 
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These new codes  ̂ 
   are again kept fixed for the remaining quarters in year       . 

 

We continue this whole procedure for             as a Markov chain, in the sense that estimates 

for the quarters within the current year   depend on values of the previous year    , but not of earlier 



 

 

years. Next, we define:  ̂  
      ̂ 

     . For one bootstrap replicate  , we obtain the sequence of 

estimated turnover levels in industry  :  ̂  
    

 ∑  ̂   
    

       

    (                    ). Next 

we derive the sequence of growth rates  ̂  
      

      ̂  
  

 ̂  
    

⁄  1) (     ) (here we omitted 

superscript  ). We then repeat the whole procedure   times (for some large  ).  

 

The bootstrap bias and variance of the estimated growth rates are then estimated as follows (Efron and 

Tibshirani, 1993): 
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3. Modelling classification errors for the level transition matrix 

The total number of industries in       is large – about 300 in The Netherlands. We therefore limit 

ourselves to estimating the accuracy of growth rates for a subset of nine target industries. Note that we 

do take the effect of misclassifications between target and non-target industries into account. We use 

  to denote the set of target industries, for which we want to compute (5) and (6), and         to 

denote the other industries. 

 

To estimate the transition matrices   
   and   

  , we used audit samples of units for which both  ̂ 
  and 

  
  are observed (see Section 5). As these audit samples are small, we introduced parsimonious models 

for the probabilities in these matrices. The model for   
   is described in this section and the model for 

  
   will be described in Section 4. 

 

The transition matrix   
   (Table 1) was modelled and estimated in the same way as described 

previously in Van Delden et al. (2016), so we only discuss this briefly. We divided the transition 

matrix into three parts: (1) the diagonal elements within   (       ); (2) the off-diagonal 

elements within  ; and (3) the elements that belong to        . The latter stratum is also denoted by 

       
 

Table 1: Transition probabilities (subscript   omitted) for   
  . 

True 

industry 

 Observed industry 

             

                        

                        

             

                        

                                     

 

3.1 The diagonal elements 
For the diagonal elements we estimated the probability    of unit   to be classified correctly,    

 ( ̂ 
   |  

   ) by means of a logistic regression on a number of independent variables 

(McCullagh and Nelder, 1989), namely size class, number of chamber of commerce units and the 

observed industry code. We estimated the probabilities    from an audit sample that we drew on 1 July 



 

 

2014, further re erred to as the ‘2014 aud t sample’. For the ‘2014 audit sample’, those three variables 

described the    sufficiently well (see Van Delden et al., 2016).  

  

3.2 The off-diagonal elements 
For the off-diagonal elements, the starting point is     , which stands for the probability that the 

observed industry code is misclassified. Next we estimate, given that a unit is misclassified, the 

probability distribution over the other observed industry codes, according to  

 

 ( ̂ 
   |  

     ̂ 
   )  

 ( ̂ 
   |  

   )

    
                   (7) 

We assumed that the conditional probabilities        are the same for all units. We also assumed that 

the numbers of misclassified units in the off-diagonal cells follow a log-linear model. We estimated 

the parameters from the ‘2014 aud t sample’. To further reduce the number of parameters, we grouped 

the off-diagonal cells into five clusters, where cells within the same cluster are supposed to have a 

comparable probability of misclassification. The estimation procedure is explained in Van Delden et 

al. (2016). 

 

3.3 The     colums and rows 
Finally, we estimated the overall probabilities        and       , the last column and last row in 

Table 1. The units in the last row were observed in the audit sample, so the corresponding probabilities 

could be estimated directly from the log-linear model of Section 3.2. Note that direct estimation of the 

probabilities in the last column would require an additional, very large, audit sample from units 

observed within the non-target industries. Instead we used an indirect approach to approximate the 

probabilities in the last column. 

 

Let   ∑       
 
   ∑       

 
   ⁄  denote the rat o between the total number o  “m ssed un ts”  n the 

true industries       } and the number o  “wrong un ts”  n the observed  ndustr es       }. As 

noted above, the sum ∑       
 
    can be estimated from the ‘2014 aud t sample’. Given an value for 

 , we can estimate the sum ∑       
 
    as  ∑       

 
   . We propose to approximate   by the 

corresponding ratio of observed yearly transitions in the GBR, that is the ratio between the numbers of 

units that enter and leave the target industries. Given an estimate for ∑       
 
   , we can estimate the 

probabilities        using the log-linear model of Section 3.2 (see van Delden et al., 2016). 

 

3.4 Consequence of model estimation for bootstrapping 
For the bootstrap simulations, the probability           ̂         |      refers to the event 

that a unit from a given target industry   is observed in an unspecified industry outside the target set 

(“missed turnover”). Therefore, there is no need for further refinement as those units do not contribute 

to the target industries. Likewise, the probability           ̂   |           , refers to the 

event that a unit from an unspecified industry outside the target set is observed in a given target 

industry  . For this “excess turnover” we do need a further refinement, because the properties of an 

erroneously included unit may depend on its actual industry. For the car trade case study, to be 

discussed below, Van Delden et al. (2016) found that erroneously included units originated from a 

wide range of non-target industries with different turnover distributions.  

 

In that paper, we assumed that the relative number of units from each non-target industry           

that are erroneously observed in a given target industry     is proportional to the corresponding 

yearly transitions in the GBR. The associated excess turnover values were obtained from a simple log-

normal distribution. The latter step is not easily extended to time-related classification errors because 

in the current study we need a time series of turnover for each unit. Therefore, we introduce an 

alternative approach for the turnover values. 

 

We propose to make use of the actual units in a given year that according to the GBR move from 

outside the target set to an industry within the target set. These units encompass the empirical 



 

 

distribution of the erroneously observed units within the target industries. In other words we extend 

our population of observed units by drawing a bootstrap sample (with replacement) from the missed 

units, such that the number of erroneously observed units is     times the number of missed units of 

that industry. Note that we use a non-parametric bootstrap for these units. 

 

The procedure can in principle be repeated for multiple years. However, for practical reasons, we will 

limit the procedure to sets of two subsequent years. The reason is that the simplifications we used to 

handle the missed units and the erroneously included units become less realistic over time.  

 

4. Modelling classification errors for the change transition matrix 

4.1 The model 

The probabilities   
           

    can be grouped into four situations (A−D), given the values for   
 , 

  
    and  ̂ 

   . We take the true industry code in current situation, thus   
 , as the starting point. Next 

we consider whether the true industry code is the same as the one in previous year (  
    

   , 

situations A and B) or not (  
    

   , situations C and D). Further, we regard whether last year’s 

observed industry code is now correct  ̂ 
      

  (situation A and D) or not  ̂ 
      

  (situation B and 

C). The logic behind this approach is that the GBR aims (from the viewpoint of the current situation) 

to obtain the correct industry code during the actualisation of its industry codes from December to 

January. Thus when the previously observed industry code is now correct, thus when  ̂ 
      

 , there 

is in fact no need to change the observed industry code, so the correct transition would be  ̂ 
   ̂ 

   . 

However, when  ̂ 
      

  the GBR should change its observed industry code into the true value, thus 

 ̂ 
    

  and  ̂ 
   ̂ 

   .  

 

  

Table 2: Four situations for   
   ,   

  and  ̂ 
   .

1
 

Sit. 

 

     
 

    
   

 ̂    
  

Possibility 

  

Audit 

substr 

 Probability 

        Nr.  ̂  Event      

A      
 

  
 

1   U 

 

AS 3       

 

  

    

2   S 

 

AS 1           

 

  

         

  

B   

 

  
 

  
 

1   U 

 

AS 2 

             

      
 

 

 

 

    

2   R or S 

 

AS 1 

                        

      
 

 

 

 

    

3   S 

 

AS 1 

               

      
 

 

  

         

  

C   

 

  
 

  or   
 

1   or   U 

 

AS 2 

             

      
 

 

 

 

    

2   N or S 

 

AS 1 

                        

      
 

 

 

 

    

3   S 

 

AS 1 

               

      
 

 

  

         

  

D      
 

  
 

1   U 

 

AS 2       

             2   S   AS 1           
Legend: grey = no change in true industry, blue = change in true industry, green = correct observed industry, red = incorrect 

observed industry. The colouring of  ̂    and of  ̂  is relative to the value of   . 

 



 

 

In summary, we have the following four situations (see also Table 2): 

A. (  
    

   ) and ( ̂ 
      

 ): “no change  n true  ndustry, the previously observed code is now 

correct”; 

B. (  
    

   ) and ( ̂ 
      

 ): “no change  n true  ndustry, the previously observed code is now 

 ncorrect”; 

C. (  
    

   ) and ( ̂ 
      

 ): “change  n true  ndustry, the previously observed code is now 

 ncorrect”; 

D. (  
    

   ) and ( ̂ 
      

 ): “change  n true  ndustry, the previously observed code is now 

correct”. 

 

Within these four situations different events may occur. When  ̂   ̂    we say that the observed 

industry is UNCHANGING (event U). In case that the observed industry code changes ( ̂   ̂     

there are a number of possibilities for the transition  ̂     ̂ . Each of these has a certain probability 

of occurrence, depending on the situation. We model the probability for  ̂   ̂    for three events: 

 NOTICE (N) a true change in industry. We denote the probability of this event—given 

       —by   . When this event occurs then  ̂    . 

 RESTORE (R) an industry error that was present in year     (for instance when the true 

industry code had changed in the past but that change was not noticed in the GBR). The 

probability that this event occurs—given         AND  ̂        —is   . When the 

event occurs then  ̂    . 

 SPURIOUS CHANGE (S) of the observed industry. This event can occur under any 

condition, with probability   . The newly observed industry code  ̂  is drawn from a transition 

matrix with elements           ̂ 
   | ̂ 

                where         . This event 

concerns all changes without a clear explanation. 

  

For each of the four situations, the different events that may occur are shown in Table 2. For instance, 

in situation A, after the transition  ̂     ̂  the observed industry code may be correct ( ̂    ) 

corresponding to event U, or incorrect ( ̂    ), corresponding to event S. Notice that event R can 

occur only for enterprises in situation B. Event N only applies to units in situation C2. Event S can 

occur for any unit. We further assume that events N, R and S occur independently, with the restriction 

that at most one event can occur in the transition from year     to  . The probability that two (or 

more) events occurs simultaneously is small anyway, but it is simpler to exclude that option. We 

assume initially that   ,   ,    and        are the same for all units (but see Section 6). 

 

We have worked out the probabilities of different possibilities within the situations A–D, in terms of 

the three parameters   ,    and   . The result is shown in the final column of Table 2. Note that 

within each of the situations A, B, C, and D, the probabilities sum to 1. 

 

4.2 Estimating the parameters 

The model for   
   can be estimated from an audit sample where for each sampled unit the values for 

 ̂ 
 ,  ̂ 

    and   
 ,   

    were obtained (see Section 5). We propose to estimate only the parameters   , 

   and    from the audit sample, and this only for “simple” units (see Section 5). Since the events are 

rare, a small audit sample is insufficient to estimate all of the conditional transition probabilities 

      . Instead, we approximate all        by the relative frequencies of observed changes within the 

GBR. So we assume that the        for the true industry codes are close to those of the observed 

industry codes. 

 

We estimate the parameters   ,    and    by maximum likelihood (ML). Maximising the likelihood 

function of the observed data directly is complicated, because there are two cases for which it is not 

clear which event occurs: “S tuat on B – poss b l ty 2” (see Table 2) and “S tuat on C – poss b l ty 2”, 
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the event N to apply only to units in situation C. It turns out that this greatly simplifies the estimation of the 

model. 



 

 

namely either R or S (first case) or N or S (second case) occurred. By introducing two latent binary 

variables that indicate which event occurred in these situations, we obtain a complete-data likelihood 

function that is easy to maximise. An EM algorithm (Little and Rubin, 2002) can then be used to 

obtain ML estimates for   ,    and   . 

 

In this case, the EM algorithm works as follows. Denote the number of sampled units for situation 

          } as   . Further, let               and let    be the number of units where 

( ̂ 
     ̂ 

 ). The estimated population equivalents (after multiplying by the sampling weights   ) are 

 ̂   ̂   ̂   ̂   ̂  and  ̂ . To initialise the EM algorithm we use starting values   
   

 

 ̂   ̂ ⁄ ,   
   

  ̂   ̂ ⁄  and   
   

  ( ̂    ̂  ) ( ̂   ̂ )⁄ . 

 

E-step. Given the current parameter estimates   
   

,   
   

 and   
   

 compute 
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     ̂ 

 )
)

     

 ̂ 
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where   
   

 and   
   

 denote the expected numbers within situation B2 and C2 (given the current 

parameter estimates) where the first event occurs (R or N).  

 

M-step. Given the expected numbers   
   

 and   
   

 from the E-step compute 

 

  
     

 
  

   
[ ̂    

   
   

   
]

  
   

[ ̂    
   

   
   

]  [ ̂    
   

] ( ̂   ̂ )
  

  
     

 
  

   
[ ̂    

   
   

   
]

  
   

[ ̂    
   

   
   

]  [ ̂    
   

] ( ̂   ̂ )
  

  
     

 
 ̂    

   
   

   

 ̂    
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The E- and the M-step are repeated until the estimated parameters have converged. 

 

5. Case study: data and audit samples 

5.1 Case study 
We applied the effect of NACE classification errors to the estimation of quarterly growth rates for the 

short-term business statistics. We derived turnover from value added tax (VAT) data for the smaller 

and simple statistical units. By simple units we mean statistical units with a     relationship to VAT 

units. The complex and most complex units concern units for which the enterprise group is split up 

into multiple enterprises (for the simple units the enterprise group consists of one enterprise, as an 

approximation). The most complex units concern units that belong to an enterprise group with 

complicated, international structures, that are treated by a special team at Statistics Netherlands (SN). 



 

 

This special team ensures that all variables that are collected across different outputs for those units 

are consistent with each other. VAT units cannot be uniquely related to the complex and most 

complex units, and for the latter units we use census survey data. Altogether we have turnover data for 

all units in the target population. 

 

We limit our accuracy estimates to the economic sector car trade (NACE G45). Within car trade, there 

are six publications cells for which STS estimates are published and there are nine industries. Based 

on those nine industries all publications that use turnover (STS, SBS, National accounts) can be 

produced. Using the set of industries we tried to develop a method to quantify the effect of time-

related classification errors. We used quarterly turnover data of eight quarters: the first quarter of 2014 

through to the fourth quarter of 2015. 

 

5.2 2015 Audit sample 
We aim to find instances of all four situations and of all events mentioned in Table 2. It might require 

a large sample to find instances where the true industry code changed whereas the observed industry 

code did not change. To solve this issue we attempted to divide the units that are present in both   and 

    into three “audit strata” (AS): 

AS 1: the observed industry in the GBR has changed ( ̂ 
   ̂ 

   ); 

AS 2: the observed industry in the GBR has not changed ( ̂ 
   ̂ 

   ) and there is a large probability 

that the observed industry contains an error in either period ( ̂ 
    

  and/or  ̂ 
      

   ); 

AS 3: the observed industry in the GBR has not changed ( ̂ 
   ̂ 

   ) and there is a small probability 

that the observed industry contains an error in either period ( ̂ 
    

  and/or  ̂ 
      

   ). 

The demarcation of AS 1 follows directly from the observed GBR data. The criteria by which the 

remaining units were assigned to either AS 2 or AS 3 will be discussed in Section 5.3. 

 

Next, we divided the population of panel units at 1 July 2015 into 27 strata (nine industries times three 

audit strata) and sampled 10 units from each stratum. We re er to th s as the ‘2015 aud t sample’. 

Since the vast majority of units is part of AS 3, this sample allocation implies that units with changed 

observed industry codes (AS 1) or a large probability of erroneous observed industry codes (AS 2) are 

oversampled. In addition we divided the population of units that were present at 1 July 2015 but not at 

1 July 2014 (births) into 9 industry strata and sampled 3 units from each stratum. The total sample size 

was 270 + 27 = 297 units. 

 

We gave the IDs of the sampled enterprises—without the AS information—to an expert in industry 

classification at CBS. For each unit this expert (aimed to) determine the true actual value of the 

industry at time of judgement and the true industry 12 months earlier. He made use of ownership 

relations of the unit, of current and past internet information and he contacted the enterprise when 

needed. Past  nternet  n ormat on was obta ned by us ng the  nternet arch ve “waybackmach ne.org” 

that saves snapshots of internet pages at regular intervals (a few times per year). For practical reasons 

the judgement was done from November 2015 – January 2016. The expert also looked up the observed 

industry codes in the GBR at the same time points. Note that the obtained information does not aim to 

give information on the state of the codes at 1 July 2015, but gives insight into the difference between 

true and observed industry codes at two time points with 12 months difference.  

 

5.3 Determining the audit strata 
In order to distinguish AS 2 from AS 3 we re-used the ‘2014 audit sample’. This sample was drawn at 

1 July 2014 and consisted of 25 units per car trade industry, for which the true and the observed 

industry codes were determined at that time (see Van Delden et al., 2016). We added background 

variables to the ‘2014 audit sample’ to compute eight indicators that potentially indicate the presence 

of an error in the observed industry code: 

1. the so-called EMP fraction—the relative contribution of the legal units (measured as the relative 

number of employees) that have the same industry code as the enterprise as a whole— s ≤ 0.4 in 

both years (  and    ); 

2. a clear change in the EMP  ract on  rom ≤ 0.4 at     to ≥ 0.6 at   or vice versa; 



 

 

3. number of legal units per enterprise in   is ≥ 4; 

4. name of the enterprise changes from     to    
5. change in set of names of the legal units underlying the enterprise from     to  ; 

6. large change in turnover per employee (for an enterprise) from     to  ; 

7. change in industry code within VAT data set; 

8. change in activity code within a commercial data set (www.locatus.com) of a company that visits 

shops in the Netherlands and applies its own classification of economic activity. 

 

Denote the indicators by     (       ), with                       }. We analysed the 

effectiveness of the eight indicators by computing    ∑           ̂ 
       

       ∑          , 

i.e., the fraction of units selected by the indicator for which the observed industry code is erroneous. 

We also combined the scores of two indicators by      
      if (      or      ), and similarly for 

three or more indicators. 

 

Based on   , indicator 2 was the most effective, followed by 1, 8, 4, 5 and 3 (Table 3). Indicators 6 

and 7 were not effective at all. For the indicator    and subsequent combined indicators     
   ,       

    

etc. in the order of their effectiveness according to Table 3, we computed an ROC curve (receiver 

operating characteristic) (Figure 2). The vertical axis shows the probability that true positives 

(=classification errors) are found and the horizontal axis the probability that false positives are found. 

Figure 2 shows that the probability for true positives is larger than that for false positives. The curve 

bends near       
   . We selected        

    to define the stratum AS 2 (TRUE) and versus AS 3 (FALSE). 

  

Table 3: Effectiveness of the indicators. 

  1 2 3 4 5 6 7 8 

   0.333 0.714 0.108 0.278 0.200 0.000 0.000 0.333 

 

 
Figure 2: ROC of the (combined) indicators. 

  

6. Results 

6.1 Audit sample 
The results o  the ‘2015 aud t sample’ o  the cont nu ng un ts are shown  n Table 4. The net sample 

size was 252, because 18 units had ceased to exist between 1 July 2015 and the moment of auditing. 

The vast majority of the enterprises in the audit sample—after applying the design weights based on 

industry × audit stratum—fell under “Situation A – possibility 1” (no change in true and observed 

industry and observed = true code). The second most frequent occurring case is “Situation B – 

possibility 1” (no change in true and observed industry and observed ≠ true code). We also clearly 

observed cases where an error was restored (part of “Situation B – possibility 2”) but this was a 



 

 

limited part of the total number of cases in situation B. Likewise, we found situations where an 

observed change in industry codes corresponded with a true change (part of “Situation C – possibility 

2”), but this is a limited fraction compared to the total number of cases in C. Note that B2 and C2 had 

much smaller design weights that B1 and C1 so the ratios as directly computed from the sample are 

much larger than those computed using the design weights. 

 

 

Table 4: Results of the audit sample (Sample = unweighted counts; Pop = weighted counts). 

type subgroup 45111 45112 45191X 45194 45200 45310 45320 45401 45402 

Sample A1 6 26 13 21 18 20 14 23 22 

 

A2 0 0 0 0 0 0 3 0 0 

 

B1 18 0 10 2 6 7 7 4 5 

 

B2 2 0 3 4 1 0 2 1 1 

 

B3 2 0 1 0 0 0 0 0 1 

 

C1 0 0 0 1 1 0 0 0 0 

 

C2 0 1 1 1 1 0 0 0 0 

 

C3 1 0 0 0 0 1 0 0 0 

 

D1 0 0 0 0 0 1 0 0 0 

 D2 0 0 0 0 0 0 0 0 0 

Pop A1 44 16551 539 262 3605 1357 607 329 891 

 

A2 0 0 0 0 0 0 18 0 0 

 

B1 53 0 624 32 1202 352 103 78 211 

 

B2 4 0 18 10 20 0 3 2 4 

 

B3 3 0 9 0 0 0 0 0 4 

 

C1 0 0 0 29 521 0 0 0 0 

 

C2 0 32 9 2 20 0 0 0 0 

 

C3 1 0 0 0 0 9 0 0 0 

 

D1 0 0 0 0 0 16 0 0 0 

 D2 0 0 0 0 0 0 0 0 0 

 

Estimated from the sampled data (using the design weights), 0.608% of the units in the population had 

a change in the observed industry and 0.369% had a change in the true industry code. That exemplifies 

that it is very difficult to draw a small sample in which all the different situations are found. To 

increase the efficiency of the sampling in that respect, we used the audit stratum. We analysed whether 

the use of the audit stratum was effective. First we estimated the relative proportion of population 

units per situation from the results in Table 4. Next, we computed the expected number of sampling 

units per situation (left column in Table 5) that would have been obtained when we would have 

sampled randomly the same number of active units (as in the audit sample) from each industry but 

now without using the audit stratum. We compared those numbers with the actual sampling numbers 

per situation. (right column of in Table 5). Both are aggregated over the industries within car trade. 

Using the audit stratum proved to be effective in finding cases for Situation B2 and C2. 

 

We computed the parameter estimates by the EM-algorithm in two ways. First we used the sampling 

weight according to industry × audit stratum. That resulted in the estimates  ̂       ,  ̂        

and  ̂         . Next, we used only the audit stratum weights, which resulted in  ̂       , 

 ̂        and  ̂         . Under the assumption that our model is correct—thus that the 

parameters   ,    and    do not vary by industry—the latter estimates are the best, because including 

the industry weights will increase the variance of the estimates (Kish, 1992). In fact, the weights 

according to industry × audit stratum varied much more than those by the audit stratum only. The 

parameters varied considerably by the two different sets of weights. 

 



 

 

Table 5: Expected versus realised number of sampling units per 

situation (explanation in text). 

Situation 

Expected 

(without audit stratum) 

Realised 

 (with audit stratum) 

A1 182.4 163 

A2 0.7 3 

B1 58.4 59 

B2 2.8 14 

B3 1.2 4 

C1 5.1 2 

C2 0.5 4 

C3 0.5 2 

D1 0.3 1 

Total 252 252 

 

 

The est mated parameters re er to the s mple un ts that belong to s ze class 10−40. We expect that the 

other units have higher probabilities    and    and a lower probability    because more manual effort 

is put into them in daily production. For the largest, most complex units we expect that    and    are 

close to     and that    is close to 0.0 since they are thoroughly checked by the special team at SN 

(see Section 5.1). Especially for the most complex units it is nearly impossible to estimate those 

parameters from an audit sample. Instead, we used a linear interpolation in error probability from the 

most complex units to the simple units (with size class), similarly to the model that we used for the 

diagonal elements of   
   in Van Delden et al. (2016, figure 2). This is shown in Table 6. In this table 

 ̂      is an estimated probability from the audit sample,  ̂      is an expert guess of the corresponding 

probability for largest, most complex units, and  ̂    
 

 
 ̂      

 

 
 ̂      and  ̂    

 

 
 ̂      

 

 
 ̂     . For    and    we chose  ̂          and for    we chose  ̂         . 

 

 

Table 6: Relative values of the parameters   ,    and    per 

complexity class. 

Complexity class 10−30 40 50 60−90 

Simple  ̂       ̂       ̂     ̂    

Complex  ̂     ̂     ̂     ̂      

Most Complex  ̂     ̂     ̂       ̂      

 

6.2 Accuracy 
 

We limit ourselves to presenting the results for three of the nine car industries, as an example. The 

other six industries showed similar outcomes. Those three are industry (NACE code) 45112 (sale and 

repair of passenger cars), 45191X (trade and repair of goods vehicles) and 45402 (retail trade in 

maintenance and repair of motorcycles). They had quarterly turnover levels of about 8.0 billion euro, 

1.3 billion euro and 0.13 billion euro (not shown). Their quarter-on-quarter (qoq) turnover growth 

rates varied considerably with the quarter of the year (Figure 3, left panel). For instance the sale of 

cars (45112) decreased in the third quarter of 2014 relative to the second one and increased from the 

third quarter to the fourth quarter in both years. The large qoq growth rates in the fourth quarter can be 

explained by special tax regulations that stimulated the sale of cars at the end of both 2014 and 2015. 

 

Provisional results on the accuracy of those qoq changes in turnover are shown in the right panel of 

Figure 3. Results are also provisional because we have used only 100 bootstrap replicates since the 

computation time for the bootstrap replicates is rather long. We ultimately wish to use 10.000 



 

 

replicates because classification errors of large enterprises occur with a small probability but they may 

have a large impact on the outcomes.  

 

The statistical division at SN considers a root mean squared error of about 1.5 per cent points as an 

acceptable accuracy level for publication. That means that the accuracy of the qoq changes for 

industry 45112 and of 45191X are acceptable. However, qoq turnover changes for industry 45402 are 

too inaccurate. Notice that the RMSE, bias and standard errors of the qoq changes in turnover 

increased with decreasing turnover levels. This was also found for the six car trade industries that are 

not shown here. 

 

  
Figure 3: Quarter-on-quarter changes and their corresponding accuracy for three car trade industries; 

accuracy is measured as root mean squared error (RMSE), bias (B) and standard error (SE).  

 

For industry 45191X and 45402 the RMSE is mainly dominated by the standard error. Furthermore, 

the RMSE is larger in the first quarter of the year than in the other three quarters of the year. Possibly 

the peak in the first quarter of 2015 is because units may then change their industry code (according to 

the change matrix). A further analysis into the data revealed that the number of erroneously included 

units in the target industry was larger in 2015 than in 2014 (not shown). Maybe this increase in the 

number of units also caused an increase in standard error. When the erroneously included units have 

other growth rates than the missing units, that will lead to inaccuracy. It is a point for future research 

to verify whether this explanation is correct.  

 



 

 

7. Discussion 

The industry code is a key characteristic of enterprises and it is used to differentiate economic 

characteristics such as production, use and economic growth into economic sectors. European 

regulations prescribe that this characteristic is maintained in a central business register that can thus be 

used to unify different economic outputs of NSIs. In practice, the industry code is often derived 

automatically from different administrative sources because it is simply too time consuming to 

determine this characteristic manually for all enterprises. In addition to that, budget cuts at NSIs 

restrict possibilities to find and correct errors in industry code. Given these conditions, it is relevant to 

investigate the size of the classification errors and their effect on accuracy of statistical outcomes. In 

this paper, we focused in particular on the effect of time-related errors in observed industry codes on 

estimated growth rates by industry. 

 

Despite the fact that (apparently) less than 1% of units within the target population change their true 

industry code, we were able to collect some information on errors in the observed changes in industry 

code, using an audit sample of limited size. The background variables that we linked to the population 

of units were effective in differentiating between units with high and low probabilities to have a true 

change in industry code. Nonetheless, because the estimates of the parameters   ,    and    are based 

on a limited number of audit cases they are not very precise. It is a point for future research how we 

can improve the estimation of classification error probabilities. A first idea is to estimate the industry 

code of enterprises from their web sites using text mining methods (independent from the GBR codes). 

We could then obtain two independent sets of industry code estimates and use those to estimate 

classification errors by means of a latent class model (Biemer, 2011).  

 

Manually determining the industry code of a small audit sample (of nine industry codes) required a 

considerable amount of time. It is not feasible to apply this approach to all industry codes in the STS 

domain, which encompasses more than 300 industries. An important question for further research is 

therefore to investigate which simplifications can be introduced to reduce the number of parameters to 

estimate, while still obtaining acceptable accuracy estimates (compared to the more elaborate approach 

that we currently use). Notice that the application that we are interested in is a complicated one in that 

respect because any information on non-sampling errors can only be obtained by collecting additional 

information. In many other applications, different overlapping data sources are combined so that there 

are two or more measurements per variable per unit. This overlap can provide information on the 

amount of error in each source, without the need for collecting additional data. 

  

Our bootstrap procedure will lead to some bias in the estimated accuracy, because we start our 

procedure from the observed data (including the observed industry codes) and then draw new industry 

codes, see Figure 1. For the case of level estimates, we derived formulas for the size of this bias and 

we also derived a correction for this bias in Van Delden et al. (2016). For the case of the accuracy of 

the growth estimates we still have to look into this bias and try to find a correction for it; this a point of 

future research. So far we ignored this bias, because in Van Delden et al. (2016) we found that the 

bias-corrected level accuracy estimates were close to the uncorrected estimates. 

 

Finally, we would like to remark that the ultimate practical aim is not just to determine the accuracy of 

the growth rate estimates but also to improve the accuracy for those industries for which we find that 

the current estimates are too inaccurate (e.g. industry 45402 according to the provisional results). It is 

still an open question how to do this in an efficient manner. In Van Delden et al. (2016) we showed 

that it is not sufficient to focus on the industries with the lowest accuracies because there are also 

transitions (between observed and true codes) from other industry strata. 
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