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Abstract
This paper explores the different ways in which auxiliary information can be put to use in cali-

brated weighting adjustment under survey nonresponse. Information is often present at two levels,
the population level and the sample level. The many options available in executing the calibration
derive from several factors: One is the order in which the two sources of information enters into
calibration, a choice of a bottom-up as opposed to a top-down approach. Another is whether the
calibration should be carried out sequentially in two steps, or in one single step with the combined
information. A third question is whether one can simplify the procedure, at no major loss of accu-
racy, by transcribing individual population auxiliary data from the register to the sample units only.
We make a systematic list of the possibilities arising for calibration adjustment in this setting. An
empirical study concludes the paper.
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1. Introduction

The nonresponse affecting most sample surveys today continues to pose methodological
challenges because of the bias caused in estimates of population parameters. Nonresponse
rates are high and continue to rise, exacerbating the problem. Nonresponse adjustment
weighting is commonly used in the estimation. The broad possibilities that this technique
offers, especially for calibration weighting, are explored in this article.

We need to distinguish different levels of availability of variable values: The population
level, the sample level, the response level. The sample is drawn by probability sampling
from the population. The response is the subset of the sample for which the study variables
values (the y-variable values) are individually observed.

Auxiliary variables are essential. To qualify as auxiliary, a variable must contain infor-
mation at a higher level than the response, and its value must be known individually for all
units in the response.

The use of auxiliary variables contributes to two important objectives in estimation: A
reduction of variance and a reduction of nonresponse bias. A considerable literature exists.
A recent review paper [1] brings up many of the issues in unit nonresponse weighting
adjustments and is a useful starting point for reading.

We agree with the assessment of Brick (2013), p. 330: ”... survey estimates may
be biased even after the adjustments. Nonresponse also causes a loss in the precision of
survey estimates, primarily due to reduced sample size and secondarily as the result of
increased variation of the survey weights. However, bias is the dominant component of
the nonresponse-related error in the estimates, and nonresponse bias generally does not
decrease as the sample size increases. Thus bias is often the largest component of mean
square error of the estimates even for subdomains when the sample size is large”. The same
author, p. 334, notes: ”The auxiliary variables are very valuable for adjusting the design
weights to account for nonresponse.”

For this article, two features of an auxiliary variable must be distinguished:
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• The information about the variable. It specifies the detailed knowledge about the
variable available at the outset; it indicates the potential use in estimation.

• The role of the variable in the calibration estimation technique.

We consider two possible roles in estimation of the auxiliary variable:

• As a known population total.

• As variable values known for all units in the sample.

This distinction has been described as population-based as opposed to sample-based, as
Kalton and Kasprzyk (1986); or Info-U as opposed to Info-S, as in Lundström and Särndal
(1999) and Särndal and Lundström (2005).

The information can be of several types, depending on the survey environment. Differ-
ent countries, and their national statistical agencies, have different auxiliary resources for
their production of national statistics. Examples of types of information are the following:

• The auxiliary variable value is known individually for all units in the population.
In the Scandinavian countries, many auxiliary potential auxiliary variables fit this
description, emanating from exhaustive registers of the whole population and tran-
scribable to the survey data file using the unique personal identifier as a key. This
generates two roles of the information in the calibration: As a known population to-
tal, obtainable by adding up the individual values; As values used for the sample units
only, although individually known for all population units. This deliberate decision
to forego part of the information is justified when squared bias rather than variance
is the main contributor to mean squared error and/or important savings in time and
other production factors are realized by transcribing the auxiliary values from the
registers (where they reside for the whole population) to the much smaller sample
file only.

• Population totals are taken from reliable sources outside the survey itself; totals are
known (imported), but individual values are unknown at the population level. A typ-
ical example is the long time use in the Canadian Labour Force Survey of up-to-date
results from demographic modeling, hence not exact, but deemed sufficiently close,
about the population count in categories by sex, age group and region. These counts
are treated as known population counts in the calibration. Brick (2013), p. 334 em-
phasizes: ”The population-based adjustment is especially useful when characteristics
for the entire sample are not available but the population totals are known, because
these adjustments only require capturing the data from the respondents.”

• The auxiliary variable value is known (observed) for the sample units only, and
thereby known individually for the respondents also. Data of this kind are known
as paradata, consisting e.g. of information from the data collection process. Exam-
ples include data for a sample unit such as the number of (telephone) contact attempts
attempted before the unit responds or is declared nonrespondent, the identity of the
interviewer handling the unit, and others. Brick (2013) p. 334 also notes: ”Sample-
based adjustments need data for the full sample but do not require knowing control
totals for the entire population. Sample-based and population-based adjustments are
equally effective for dealing with nonsense bias. (Särndal and Lundström (2005) and
Brick and Jones (2008).”



A much practiced simple use of auxiliary information is the weighting class technique.
The inverse of the response proportion in sample subgroups is the basis for this weighting.
Kalton (1983), p. 63 states: ”Among the potential variables for use in forming weighting
classes, the ones that are most effective in reducing nonresponse bias are those that are
highly correlated both with the survey variables and the (0,1) response variable.” However,
more generally, the adjustments need not be based on a grouping of units.

This article focuses on calibration estimation, a general technique for the use of auxil-
iary information. Basic calibration theory is found in Kalton (1983); its uses in connection
with nonresponse has been explored by a number of authors including Deville (1995), Kott
(2006), Kott and Chang (2010), Kott and Liao (2012), Lundström and Särndal (1999) and
Särndal and Lundström (2005).

A wide spectrum of possibilities are included in the class of calibration estimators. As
Brick (2013) notes: ”A wide variety of nonresponse adjustment estimators are in this class,
including poststratification, raking, and generalized regression estimators”. In the context
of nonresponse, a variety of uses of calibration arises because information may be available
at the population level and at the sample level.

Should the information be combined and be put to use in a single step of calibration?
Or should the two sources of information enter into calibration one at a time, and then in
which order? In the latter case, bottom-up calibration is one possibility: The first calibra-
tion is then carried out from the response level to the sample level, using only the sample
information. The second calibration step uses the population information. In top-down
calibration, the first calibration step links the population to the sample using the population
level information only. The second step then usues the sample information. In either case,
both the sample information and, if available, the population information should in the end
have come to use.

The article is arranged as follows: Section 2 introduces notation and theoretical ar-
guments for the different types of calibration estimators that we will consider. Based on
these proposed estimators, Section 3 then discusses some of the scenarios outlined in the
Introduction. In Section 4 properties of the estimators are studied through a simulation
study.

2. Notation and outline of estimators

Some notation: The population is U = {1, . . . , k, . . . N}; s denotes a probability sample
from U ; the inclusion probability for unit k is πk, and its sampling weight is dk = 1/πk; r
is the response set obtained from s; r ⊂ s ⊂ U . The value yk is observed for k ∈ r only.

We study and compare a number of different alternatives for obtaining the calibrated
weights wk in estimators of the general form Ŷ =

∑
r wkyk of the population total Y =∑

U yk. We expect to find differences between those alternatives, both with regard to bias
and to variance.

The auxiliary variables are of two types, depending on the information available; it can
be at the population level or at the sample level. Variables of the first type make up a ”star
vector” x∗k, those of the second type make up a ”moon vector” xo

k. The vector values x∗k and
xo
k are known for k ∈ s, that is, for respondents as well as for nonrespondents. Further we

assume about x∗k that it is known for all k ∈ U (as when taken from a complete population
register) or, in some situations, that at least the population total

∑
U x∗k is known from a

reliable source. On the other hand,
∑

U xo
k is unknown, but the important fact that it can

be estimated without bias by
∑

s dkx
o
k contributes to a reduction of the nonresponse bias of

Ŷ .
The final weights wk are obtained by calibrating on a vector denoted xk. It can have



different forms. Three components need to be specified for the computation of the final
weights wk:

• The specification of the auxiliary vector xk;

• The calibration constraint denoted X for that given x-vector;

• The starting weights for the calibration that gives the final weights wk.

The calibration constraint states the auxiliary information that is available, or that we decide
to utilize, in computing the final weights wk. The starting weights for the final calibration
can be of two kinds:

• Direct, meaning that the starting weights are the already known sampling weights
dk;

• Intermediary, meaning that a preliminary calibration step is carried out, resulting in
preliminary weights to be used in the calibration that leads to the final weights wk.

We consider three different specifications of the x-vector:

A : xk =

(
x∗k
xo
k

)
B : xk = x∗k

C : xk = xo
k

All vectors xk used here are of the form µ′xk = 1, for all k, for some constant vector µ.
For the vector specification A we consider three forms for the calibration constraint X,
giving rise to the cases A1 to A3:

A1 : X =

( ∑
U x∗k∑

s dkx
o
k

)

A2 : X =

( ∑
s dkx

∗
k∑

s dkx
o
k

)

A3 : X =

( ∑
U x∗k∑

swskx
o
k

)

where

wsk = dk × (
∑
U

x∗k)′(
∑
s

dkx
∗
kx
∗′
k )−1x∗k, (1)

which is achieved through a calibration from the sample s to the population U .

For the vector specification B we consider also two variations for the calibration constraint
X, giving rise to the cases B1 and B2:

B1 : X =
∑

U x∗k

B2 : X =
∑

s dkx
∗
k

Finally, for the vector specification C, we consider

C1 : X =
∑

s dkx
o
k

C2 : X =
∑

swskx
o
k



2.1 The Direct approach

The weights wk in Ŷ =
∑

r wkyk are computed directly in a single-step calibration, using
the sampling weights dk as starting weights. Weights calibrated to the specified information
X are given by

wk = dk ×X ′(
∑
r

dkxkx
′
k)−1xk

We get five cases, A1dir, A2dir, B1dir, B2dir and C1dir.

2.2 Two-step approaches

As an alternative to the direct approach we have two approaches in two steps, called bottom-
up and top-down.

2.2.1 The Bottom-up approach

The name indicates that intermediate weights are obtained by calibrating first from the
response set r to the sample s, using the auxiliary vector xo

k and the constraint
∑

s dkx
o
k.

The population information plays no role in that step. Then in the final (second) step, the
x∗k vector is also brought into the picture. The intermediate weights are

wo
k = dk × (

∑
s

dkx
o
k)′(

∑
r

dkx
o
kx

o′
k )−1xo

k

These are used as starting weights in computing the final weights

wk = wo
k ×X ′(

∑
r

wo
kxkx

′
k)−1xk

needed for the estimator Ŷ =
∑

r wkyk. This gives another four cases, A1BU , A2BU ,
B1BU and B2BU .

2.2.2 The Top-down approach

The name indicates that intermediate weights are obtained by calibrating first from the
sample s to the population U , using the population information

∑
U x
∗
k. The response set

r and the vector xo
k play no role in that step, which gives the intermediary weights

wsk = dk × (
∑
U

x∗k)′(
∑
s

dkx
∗
kx
∗′
k )−1x∗k

as in (1). In the final (second) step, the response set comes into play, by a calibration from
r to s. The constraints to be used are A1, A2, A3, C1 and C2.

In the second step, we can, for the constraints given by A3 and C2, choose between using
the sampling weights dk and using the intermediary weights wsk. The first case gives

wk = dk ×X ′(
∑
r

dkxkx
′
k)−1xk,

leading to A3TD1 and C2TD1.

For the constraints A1, A2, A3, C1 and C2 we can also use the intermediary wsk and get

wk = wsk ×X ′(
∑
r

wskxkx
′
k)−1xk,



leading to A1TD2, A2TD2, A3TD2, C1TD2 and C2TD2.
For both cases, these wk are the final weights used in Ŷ =

∑
r wkyk.

(As we have assumed that µ′xk = 1, for all k, we do not need to consider the case where∑
s dkx

∗
k is used in place of

∑
U x
∗
k in (1), since this leads to wsk = dk.)

In total we thus have 16 cases, arranged in tabular form as follows:

Table 1: Organization of the calibration approaches

Estimators
Auxiliary Vector with Direct Two-step

vector constraint Bottom-up Top-down1 Top-down2
A A1 A1dir A1BU - A1TD2
A A2 A2dir A2BU - A2TD2
A A3 - - A3TD1 A3TD2
B B1 B1dir B1BU - -
B B2 B2dir B2BU - -
C C1 C1dir - - C1TD2
C C2 - - C2TD1 C2TD2

3. Preliminary discussion

Only the A1 cases use the full available information X =

( ∑
U x∗k∑

s dkx
o
k

)
; the other cases

forego parts of it. This has consequences for bias and variance that we want to explore.
The variance of Ŷ can be expected to be greater in A2, B1 and B2, compared with A1,
which benefits from the known population total

∑
U x
∗
k. But the consequences for the bias

are difficult to foresee without a more detailed investigation. A justification for A2 is a
simplified estimation task: Although the values x∗k may be available in the administrative
register for the whole population, A2 requires them to be transcribed only to the sample
data file, which saves time and effort; we need to see if the result is an appreciable loss
of accuracy in the estimates compared with A1. Cases A2, B1 and B2 imply seemingly
severe reductions of the full information content, especially A2 and B2. Nevertheless,
the implications with regard to bias and variance are not a priori obvious and need to be
assessed.

The B1BU approach is commonly used in practice. Some statisticians justify it by
saying that nonresponse adjustment should be carried out first, resulting in nonresponse
adjusted weights, wo

k, to be used in a calibration on the population information, and on
only that information. Hence some are prepared to argue that B1BU is better than A1BU,
and this despite the fact that A1BU uses more information for the final calibration. Our
prediction before doing any empirical testing is that the bias for A1BU is likely to be
smaller, but the variance perhaps greater, than for B1BU, so that a trade-off situation, lower
bias as against higher variance, may occur. Another question is whether the choice of
starting weights is important, that is, whether deriving intermediary weights really serves
a useful purpose; could one not calibrate directly on the stated information in one single
step? This calls for pair-wise comparisons: Is A1BU/TD better than A1dir, is A2BU/TD
better than A2dir, and so on.



4. A simulation study

4.1 Notation and outline

We studied the behaviour of the estimators in Table 1 by a small Monte Carlo simula-
tion. The population used is a dataset called KYBOK, consisting of N = 832 clerical
municipalities in Sweden in 1992. (We have closely followed the format of the simulation
studies reported in Särndal and Lundström (2005).) The municipalities are divided into four
groups according to size, from smallest to largest, with group sizes N1 = 218, N2 = 272,
N3 = 290 and N4 = 52. The study variable yk is ”Expenditure on administration and
maintenance” (with total Y = 1 025 983), the moon vector is xo

k = (xo1k, . . . , x
o
4k)′, where

xoik = 1, if the element k belongs to population group i, and otherwise 0. The star vector
is x∗k = (1, xk)′, where xk is the square root of ”Revenue advances”. We use response
probabilities determined by θk = 1− exp(−0.0318xk), k ∈ U , which (for this population)
leads to an average non-response probability of 0.14.

10 000 simple random samples, each of size n = 300, were independently gener-
ated. For each such sample s, a response set r was created by performing 300 independent
Bernoulli trials, one for each unit, with probability θk of success (response), for k ∈ s.

We assess the properties of the estimators, in terms of their simulation bias, variance
and mean squared error. For an arbitrary population total estimator Ŷ , these were com-
puted, with K = 10 000, as:

BiasSIM(Ŷ ) = ESIM(Ŷ )− Y =
1

K

K∑
j=1

Ŷj − Y

VarSIM(Ŷ ) =
1

K

K∑
j=1

(Ŷj − ESIM(Ŷ ))2

MSESIM(Ŷ ) =
1

K

K∑
j=1

(Ŷj − Y )2 = VarSIM(Ŷ ) + (BiasSIM(Ŷ ))2

In addition to the estimators mentionend earlier, we added, as a benchmark, the ex-
pansion (exp) estimator Ŷ = Nȳr , which would be used in a complete lack of auxiliary
information. Formally, it results from a calibration with xk = x∗k = 1, k ∈ U and X = N .
(As expected, the simulation shows this estimator to be inferior to the other choices.)

Please note that because bias can have either sign; the term ”smaller bias” (”greater
bias”) should be interpreted in the following sections as ”smaller (greater) in absolute
value”.

4.2 Results and discussion

The simulation confirms some of our conjectures in Section 3. A key factor for interpreting
the results is that the quantitative star variable xk is highly explanatory for y, whereas the
moon vector indicating the four groups is not. The variance is the dominating component
of the MSE, for essentially all of the estimators.

The decisive factor for the variance and the MSE is whether calibration on xk takes
place at the population level, as in A1dir, B1dir, A1BU and B1Bu, or at the sample level,
as in A2dir, B2dir, A3BU and B2BU.

Table 3 (for variance) and Table 4 (for MSE) show much lower numbers for the former
group of four estimators compared with the latter group of four. Much accuracy is lost here



by not taking advantage of the available population total of xk. The practice of transcribing
the register information to the sample file only would not be recommendable here.

If we look within the high accuracy group A1dir, B1dir, A1BU and B1BU, we see little
difference in variance but interesting differences in bias. The much practiced B1BU to
adjust first for bias, then to calibrate only on the the population total has the highest bias and
the highest MSE in this group of four. B1BU has marginally lower variance but not enough
to offset its greater bias. Both of the direct appoaches, A1dir and B1dir, have lower MSE.
The lowest MSE in this group of four is achieved by A1BU, showing that it is important to
let the second calibration step incorporate the full auxiliary information, although part of it
- the group vector part - was already used in the first step. It is recommended, as in A1BU,
to make the repeated use of that information.

Among the top-down alternatives, only A1TD2 shows a MSE comparable with the best
choices. As expected, the alternatives C1 and C2 do not perform well since they calibrated
on weak information.

The empirical study confirms at least some of our conjectures in the preceding discus-
sion. The variance is indeed much greater for the cases of A2 and B2 compared with A1,
whereas there is a negligible difference between A1 and B1. This is not surprising since
the moon indicator vector carries less information about the study variable than does the
quantitative star variable. Furthermore, for A1, A2, B1, and B2 there is almost no dif-
ference with regard to variance between the direct and two-step procedures. Concerning
bias, we get slightly higher bias for B1 and B2 compared with A1 and A2. The two-step
approach produce estimators with slightly less bias for A1 and A2 compared with the di-
rect approach and this tendency is reversed for B1 and B2. We note in particular that the
two-step case B1BU of ”adjusting first for the nonresponse, then calibrating to the popula-
tion total” leads, for these data, to a higher bias (-3.03) than the direct calibration (-2.76).
Although not large, the difference may suggest that the two-step approach should be used
with some caution. Comparing the two-step approaches, there are small differences, with
respect to both bias and variance, between A1BU and A1TD2 and between A2BU and
A2TD2. Within the top-down approach, we may however observe that A3TD1 have much
larger variance than A3TD2 and C2TD1 have much larger variance than C2TD2. The ob-
servations for variances are carried on to the MSE for the estimators, due to the fact that
the variance dominates the bias. A trade-off of lower bias against higher variance for B1
compared with A2 can thus not be observed for this data set.

Table 2: BIAS: BiasSIM(Ŷ )x10−4

Estimators
Auxiliary Vector with Direct Two-step

vector constraint Bottom-up Top-down1 Top-down2
A A1 -2.44 -2.31 - -2.41
A A2 -2.26 -2.13 - -2.27
A A3 - - -2.25 -2.46
B B1 -2.76 -3.03 - -
B B2 -2.59 -2.86 - -
C C1 5.96 - - 5.84
C C2 - - 5.94 5.80

Exp 9.80



Table 3: VARIANCE: VarSIM(Ŷ )x10−9

Estimators
Auxiliary Vector with Direct Two-step

vector constraint Bottom-up Top-down1 Top-down2
A A1 0.84 0.85 - 0.84
A A2 5.14 5.15 - 5.22
A A3 - - 5.02 1.53
B B1 0.83 0.82 - -
B B2 5.17 5.14 - -
C C1 5.92 - - 2.14
C C2 - - 6.32 1.23

Exp 7.23

Table 4: MSE: MSESIM(Ŷ )x10−9:

Estimators
Auxiliary Vector with Direct Two-step

vector constraint Bottom-up Top-down1 Top-down2
A A1 1.44 1.38 - 1.43
A A2 5.65 5.60 - 5.74
A A3 - - 5.53 2.14
B B1 1.59 1.74 - -
B B2 5.85 5.95 - -
C C1 9.47 - - 5.55
C C2 - - 9.85 4.59

Exp 16.84

5. Closing remarks

Our motivation for this article was to show that calibration on two sources of auxiliary
information, one at the population level, one at the sample level, gives rise to a number
of possibilities to compute the calibrated weights. We have attempted to account system-
atically for all the possible cases (Table 1). We have shown, in an empirical illustration
(Tables 2, 3 and 4) that the numerical differencies (in terms of bias, variance and MSE)
between the cases are sometimes considerable. Depending on the practical situation, a user
of calibration methodology will find some guidance in our results.
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