
Local Pivotal Methods for Large Surveys

Jonathan J. Lisic ∗ Nathan B. Cruze ∗

Abstract
The local pivotal method described provides a method to draw a spatially balanced sample for

an arbitrary number of dimensions reducing the need for complex stratification for spatial surveys.
Unfortunately, due to its quadratic run-time the local pivotal method has been restricted to popula-
tions with less than one million sampling units. In this paper, one alternative implementation and
two approximations of this method are presented. The first uses a k-d tree data structure to imple-
ment the local pivotal method, which results in a sub-quadratic run-time. The second two methods
relax the nearest-neighbor requirement in exchange for a further reduction in computational time
through approximate nearest-neighbors. In this paper, an analysis of the effects of approximating
spatial neighborhoods and a comparison of run-times between the proposed methods and existing
implementations are provided for both simulated and real area frames.

Key Words: Nearest-Neighbor, Sampling, Spatial

1. Introduction

Tobler’s First Law of Geography, Tobler (1970), states that “everything is related to every-
thing else, but near things are more related than distant things.” This is true for spatially
close sampling units such as businesses, farms, and households; where neighboring sam-
pling units are likely to have characteristics that exhibit spatial correlation. Because spatial
correlation lowers the effective sample size when sampling units are close together (see
Cressie, 1993), care should be taken to ensure that sampling units are well spread. Several
proposed methods address this specific issue: the local pivotal method (LPM) (see Graf-
ström et al., 2012), spatially correlated Poisson sampling (SCPS) (see Grafström, 2012), the
generalized random-tessellation stratified method (GRTS) (see Stevens Jr and Olsen, 2004),
and the draw-by-draw sampling excluding the selection of contiguous units (DDSESCU)
(see Fattorini, 2006).

Unfortunately, none of these methods scale well to large populations. Both SCPS and
LPM require nearest-neighbor searches, yielding quadratic computational complexity as
seen in Grafström et al. (2012) and Grafström (2012) respectively. This particular problem
is apparent in Grafström et al. (2014), where LPM is approximated to sample from a frame
of 818,017 sampling units.

GRTS relies heavily on a data structure known as a quadtree. Quadtrees have excellent
properties with respect to retrieving data, but can be computationally intensive to construct.
This limitation can be seen in the R package spsurvey (see Kincaid and Olsen, 2015) where
the number of levels of a tree are limited to 11, or a little over 4 million possible sampling
units. DDSESCU, the drawn-by-drawn method, uses simulation to determine inclusion
probabilities. This method is not usable for large population sizes due to the low probability
of re-drawing the same unit.

This paper focuses on reducing the computational complexity of LPM, although a sim-
ilar approach could be applied to SCPS. The approach taken here is through the use of
k-dimensional trees (k-d trees) to accelerate nearest-neighbor searches. Section 2 of this
paper provides background on LPM and k-d trees. Section 3 introduces an approximation

∗United States Department of Agriculture, National Agricultural Statistics Service, 1400 Independence
Avenue SW, Washington, DC 20250

to nearest-neighbor searching in k-d trees, which provides a greater decrease in computa-
tion complexity. Section 4 presents algorithms for both exact and approximate LPM using
k-d trees. Simulated and empirical results for the accelerated LPM algorithm and its ap-
proximations are provided in Section 5. Finally, a discussion of the results and possible
future work are provided in Section 6.

2. Background

The method presented in this paper is built on two key ideas, the local pivotal method and
k-dimensional trees. LPM provides a method to create well spread or spatially balanced
samples (Figure 1). This method creates spatial balanced samples by locally aggregat-
ing inclusion probabilities from neighboring sampling units, lowering the probability that
adjacent sampling units are sampled. k-d trees assist this method by providing a computa-
tionally efficient means to identify neighboring sampling units.

Before introducing the LPM, it is important to first define spatial balance. In this paper
spatial balance follows the definition provided by Stevens Jr and Olsen (2004),

B =
∑
i∈S

−1 +
∑
j∈Ni

πj

2

(1)

where
S = sample of size n from a population U of size N ;
Ni = spatial neighborhood (Voronoi tessellation about sampled point i);
πi = Pr (i ∈ S), the first order inclusion probability in sample S ⊂ U .

Necessarily,
∑
i∈U πi = n and 1 ≥ πi > 0 ∀i ∈ U .

B is bounded on the interval [0, n(n − 1)). The lower bound occurs when the sample
is perfectly balanced; the sum of first order inclusion probabilities over each tessellate is
one. The upper bound occurs under two conditions. First, the sampling weights for N − n
members of the frame have a small inclusion probability π∗, identified asA, and nmembers
of the frame have inclusion probabilities close to one, identified as A′. Furthermore, the
sets A and A′ are mutually disjoint; A ∪ A′ = U and A ∩ A′ = ∅. Second, the members
of A are sufficiently isolated in the spatial support from A′ such that there exists a sample
with a tessellate containing all n members of A′. If this specific sample is drawn, then a
single tessellate has a sum of inclusion probabilities over Ni close to n, where i ∈ A′. All
other tessellates have sums over Ni close to zero, i ∈ A. In the limit, as π∗ goes to zero,
then B goes to n− 1 + (n− 1)2 = n(n− 1). This limit can be verified through Lagrange
optimization over πi, where −B is minimized with the constraint

∑
i∈U πi − n = 0.

An intuitive case for this measure of balance occurs when the first order inclusion prob-
abilities are equal and the sampling units in the population are evenly spread across the spa-
tial domain. In this case, if each tessellate has the same area, then B is zero; a consequence
of sampled points being well spread. Although it should be noted that B can be zero when
the sampled points are adjacent to each other, as in the case of the sampled points forming
a circle at the center of a disc-shaped spatial region. However, in practice this later case is
rare.

k-d trees, like the previously mentioned tessellates, partition the spatial domain into a
set of mutually disjoint and connected regions. In the case of k-d trees the partitioning is
done through recursively bisecting the spatial domain by a univariate statistic such as a me-
dian. The univariate statistic is applied to each dimension of the k-d tree either by iterating
over the index of the dimensions or through a heuristic, such as picking the dimension with
the largest marginal variance. This partitioning algorithm allows for the construction of a

Figure 1: Left, a balanced sample with few clustered sampled units; right, a simple random
sample (SRS) with some clustered sample units. The 20 sampled units in each example are
in black, unsampled members of the frame are in grey. The frame is generated from an
i.i.d. sample from X1 ∼ Uniform(0, 1), X2 ∼ Uniform(0, 1) of size 100.

binary tree that efficiently finds nearest-neighbors in a k-dimensional spatial domain. The
details of both of these algorithms follow with emphasis on computational complexity.

2.1 Local Pivotal Method

The pivotal method is first developed by Deville and Tille (1998) as a method to efficiently
calculate unequal probability designs through splitting first order inclusion probabilities.
An adaption of the pivotal method to provide spatial balance can be found in Grafström
et al. (2012). This paper provides two algorithms LPM1 and LPM2. In this paper, only the
simpler and faster LPM2 will be considered.

The algorithm for LPM2 is straight-forward to implement (see Algorithm 1), and con-
sists of two key components. The first component is the vector valued update function g.
This function is defined as

g(i, j) =
{

(0, πi + πj) with probability πj

πi+πj

(πi + πj , 0) else
(2)

when πi + πj > 1, otherwise

g(i, j) =
{

(1, πi + πj − 1) with probability 1−πj

2−πi−πj

(πi + πj − 1, 1) else.
(3)

The second key component, and slowest part of this algorithm occurs in line 3 of Algo-
rithm 1, finding the nearest-neighbor of sampling unit i. The original implementation of
this algorithm used an exhaustive search to accomplish this task. An exhaustive search re-
quires calculating close toN−k distance calculations at iteration k ∈ {1, · · · , N−n−1}.
This leads to the average computational of O

(
N2) for this algorithm.

Algorithm 1 LPM2 Algorithm.
1: while length (U∗) > 0 do
2: Randomly select sampling unit i ∈ U∗ with uniform probability.
3: Set j to the nearest-neighbor of i in U∗.
4: Set (πi, πj) := g (πi, πj).
5: Set U∗ := U∗\{k ∈ {i, j} : πk ∈ {0, 1}}.
6: end while

Simple k-d Tree

x·,1 < 0.504

x·,2 < 0.427

A1

x·,2 ≥ 0.427

A2

x·,1 ≥ 0.504

x·,2 < 0.582

A3

x·,2 ≥ 0.582

A4

Figure 2: k-d tree node structure with depth = 2 applied to the population in Figure 1.

2.2 k-Dimensional Trees

Nearest-neighbors algorithms are integral in common statistical techniques such as k-nearest-
neighbor clustering and calculation of high dimensional kernel density estimates. In both of
these cases, k-d trees and variants provide a data structure that allows for nearest-neighbor
queries with average computational complexity of O (log(n)) (see Muja and Lowe, 2014
and Lang et al., 2005). This search time is lower than the linear search used in the original
LPM2 algorithm, but comes at the expense of building the k-d tree. k-d tree construction
hasO (n log(n)) computational complexity. Since computational complexity is defined up
to a constant, the average computational complexity for tree construction and n queries
against the tree is also O (n log(n)). Therefore, even with tree construction the average
computational complexity of the n k-d tree searches is much lower than the quadratic com-
putational complexity of the linear search.

k-d trees partition a set of k-dimensional points into a set of mutually exclusive sub-
sets. This partitioning is done by splitting the original k-dimensional space along a single
dimension at the median or other statistic calculated from the points in the space. Subse-
quent applications of this partitioning are performed individually on the resulting partitions,
choosing a different dimension at each iteration. The choice of dimension can be made by
simply iterating over each dimension repeatedly, or by selecting the dimension based on
a heuristic such as the largest marginal variance. Tree construction terminates when the
number of points in each subspace is less than or equal to a fixed number of nodes, where
the number is set a priori. A graphical view of a k-d tree applied to data in Figure 1 with
leaf node size m equal to 25 is provided in Figure 2 with the partitioning of the spatial
support depicted in Figure 3. Further partitioning by the algorithm can be seen in Figure 4
with m equal to 13 and 7.

An algorithm to build a k-d tree-based on iterating through dimensions is detailed as
Algorithm 2. In this algorithm the set of k-dimensional points X are indexed by the index
I. During each split, the sets and indexes are split between the child nodes. Note that, the
algorithm provided is known as a leaf based k-d tree since all points are stored in the leafs
as opposed to within the nodes of the tree, non-leaf based approaches are not pursued in
this research.

Figure 3: Labeled partitions of a k-d tree with max leaf node size ofm = 25 from Figure 2.
A query point (labeled 1) and its nearest-neighbors in A1 (labeled point 3) and A2 (labeled
point 2) are circled.

Once a tree is constructed it can be queried to find neighbors. In the case of LPM
and related methods, the query of interest is to find the nearest-neighbor of a point in the
k-d tree. Since the point of interest is within the k-d tree, care needs to be taken to avoid
returning the point queried. This can be avoided by performing an index check before
comparing distances; if the index being queried matches the point to be compared, then
this point is skipped. An algorithm that will return the nearest-neighbor of a point in the k-
d tree is provided as Algorithm 3. To simplify this algorithm, no attempt is made to handle
ties between distances. Such ties are common if applied to pixel data, and can be handled
through reservoir sampling (see Sunter, 1977).

The search algorithm goes through three phases to find the nearest-neighbor for a query
point in the tree. The first phase is a depth first search to find a partition of space that
contains points close to the query point. Once the first leaf node is encountered phase two
begins. In phase two, each point in the partition associated with the leaf node is compared
to the query point. Care is taken to ensure comparisons are not done between the query
point and itself. If a point is found closer to the point being queried than any prior point
evaluated, it is set as the current nearest-neighbor and the distance between this point and
the queried point is retained. After all points in the partition of point have been compared,
the tree will backtrack to other nodes in the tree. However, in this third phase, only nodes
that could feasibly lead to a point sufficiently close to the query point are considered. This
feasibility is determined through the univariate median used for splitting in the k-d tree. If
the distance between the query point and the univariate median for a given node is greater
than the current distance, this node and all of its children will not be visited. This greatly

Figure 4: Labeled partitions of a k-d trees with max leaf node size of m = 13 (left) and
m = 7 (right) from Figure 3.

Algorithm 2 Algorithm to build a k-d tree for a k-dimensional data set.
1: initialize:

Index the points in the set X with I
i← 1

2: procedure KDTREE(I,i)
3: Create new node A, with attributes left, right, median, and data.
4: if length (I) > m then
5: Split I into Il and Ir by the median of dimension i modulo k plus one.
6: Set A’s median to the split point.
7: Set A’s left child to KDTREE(Il,i+ 1).
8: Set A’s right child to KDTREE(Ir,i+ 1).
9: else

10: Set A’s data to I.
11: end if
12: return A
13: end procedure

reduces the number of nodes to explore. These three phases are revisited until all viable
nodes are traversed.

As an illustrative example, a query to find the nearest-neighbor of point v = (0.413, 0.437)
in a tree with leaf nodes of size 25 is provided. This point is identified in Figure 3 as point
1, and the tree in Figure 5 identifies the nodes visited in the query of this tree in bold. In
the first phase the left node is selected since the first element of v, 0.413, is less than the
univariate median in the first dimension of X; the right node is selected next since the sec-
ond element of v is greater than or equal to 0.427. Phase two begins with the exhaustive
nearest-neighbor search of all points in the subset of the partition labeled A2; this search
concludes with identification of the nearest-neighbor, point (0.330, 0.505) with distance
0.011 (identified as point 2). In phase three, the distance between the second element of
v and the univariate median of the second dimension is calculated as 0.0001. Since this
distance is less than the current distance of 0.011, partition A1 is also explored resulting
in a nearest-neighbor of (0.420, 0.352) with distance 0.007 (identified as point 3). Finally

Algorithm 3 Algorithm to query a k-d tree for the nearest-neighbor using the L2 norm.
1: initialize:

Index the points in the set X with I
Query for index a ∈ I
y ← xa ∈ X
dist←∞

2: procedure SEARCH(A,i,(neighbor, dist))
3: if A’s median is defined. then
4: Set j to i modulo k.
5: q ← A′s median
6: if yj ≤ q then
7: (neighbor, dist)← SEARCH(Al,i+ 1,(neighbor, dist)).
8: if (yj − q)2 < dist then
9: (neighbor, dist)← SEARCH(Ar,i+ 1,(neighbor, dist)).

10: end if
11: else
12: (neighbor, dist)← SEARCH(Ar,i+ 1,(neighbor, dist)).
13: if (yj − q)2 < dist then
14: (neighbor, dist)← SEARCH(Al,i+ 1,(neighbor, dist)).
15: end if
16: end if
17: else
18: for b in A’s data do
19: z ← xb
20: if a 6= b then
21: if ||y − z||22 < dist then
22: dist← ||y − z||22
23: neighbor← b
24: end if
25: end if
26: end for
27: end if
28: return (neighbor, dist)
29: end procedure

we enter phase 3 again and the distance is calculated between the first element of v and
the univariate median of the first dimension, here the distance is 0.008 exceeding our prior
minimum distance of 0.007. Since the minimum distance is exceeded there are no checks
done on the right hand side of the tree. At this point the query terminates because there are
no further nodes to check. The point (0.420, 0.352) is returned as the nearest-neighbor.

3. Approximate Nearest-Neighbors

The nearest-neighbor literature also considers approximate nearest-neighbors (ANN) (see
Arya et al., 1998) as a means to accelerate searches by sacrificing the requirement for
closest neighbors. Instead of closest neighbors, the requirement is replaced with the closest
neighbors found in a fixed amount of time or within a minimum distance. This form of
approximation can be useful in application to LPM2, by sacrificing balance for speed. In
this research, two methods of ANN are considered. The first is time-based. In this method

Simple k-d Tree

x·,1 < 0.504

x·,2 < 0.427

A1

x·,2 ≥ 0.427

A2

x·,1 ≥ 0.504

x·,2 < 0.582

A3

x·,2 ≥ 0.582

A4

Figure 5: A search for the nearest-neighbor of point (0.413, 0.437) (point 1. in Figure 3).

Simple k-d Tree

x·,1 < 0.504

x·,2 < 0.427

A1

x·,2 ≥ 0.427

A2

x·,1 ≥ 0.504

x·,2 < 0.582

A3

x·,2 ≥ 0.582

A4

Figure 6: A search for the nearest-neighbor of point (0.413, 0.437) (point 1. in Figure 3),
using the time-based ANN (leaf check = 1).

the amount of time to find the closest neighbor is fixed, where time is specified as the
number of partitions (leaf nodes) to check. The second is distance based, where the first
neighbor found that is sufficiently close to the sampled point will be taken as an ANN.

Time-based ANN methods restrict searching for neighbors to a subset of the spatial
domain. This improves the worst case performance of k-d trees (fixing number of leaves
to check), avoiding traversals over large portions of the tree. The path taken by a time-
based ANN for the prior example is presented in Figure 6. In this example, the maximum
number of leaves to check is set to one; this returns the point (0.330, 0.505) with distance
0.011 instead of the exact nearest-neighbor with distance 0.007. If the maximum number
of leaves to check is set to two or more, we get the same result as the nearest-neighbors
search Figure 5.

Distance-based approximations treat all potential neighbors within a fixed distance as
ANNs. Unlike the time-based ANN method, this restriction does not necessarily improve
the worst case performance of k-d trees. Instead, if the threshold is set too low an exact
nearest-neighbor search will result. To ensure reduced run-time, some knowledge about
appropriate distances is required.

In general, ties are not handled for values below the threshold. This lack of tie handling
is potentially problematic if the order of evaluation of points in a leaf node are positively
correlated with a variable of interest in the population.

The point returned as an ANN can be sensitive to the choice of threshold distance. In
the case of the population in Figure 3, a threshold of distance 0.008 or higher will only
explore the subset A2 as in Figure 6. A threshold distance of 0.008 will return the same
value as the time-based ANN with leaf check set at one. Likewise, a threshold set at 0.007
or lower will provide no reduction in leaf checks and return an exact nearest-neighbor. In
an extreme case, a positive unbound threshold distance will return the first point found,
with distance 0.285.

4. k-d Tree Acceleration

Integration of k-d tree-based nearest-neighbor searches in LPM2 is straight forward and
allows for additional acceleration for simulation by preserving the tree structure between
draws. For further performance gains, approximate nearest-neighbors k-d tree searches can
be integrated in the same way. However, there is a trade-off to be made between the quality
of the approximation and speed.

The LPM2 algorithm, Algorithm 1, can be modified to include k-d tree-based acceler-
ated queries in two steps. First, a k-d tree must be built based on the points being sampled
before line 1. Second, line 3 must be replaced with a k-d tree nearest-neighbor search or an
approximate nearest-neighbor search. This modification will provide an exact replication
of the results from the linear search implementation, provided that tied distances are han-
dled in the same way. In k-d tree searches, the only additional burden is the cost of storing
the tree in memory; fortunately, the storage requirements for the tree only grows linearly
with respect to the number of points.

For simulations, multiple draws from the same sample do not require rebuilding the
tree. This can make ANN searches considerably more desirable than using exact nearest-
neighbor searches, since the approximate approach can have lower per-search cost and the
tree building cost is amortized as the number of simulations increases.

ANN variants of LPM2 do make a trade-off between spatial balance and computational
burden. By restricting the number of nodes to search, there is a chance that closer points
may be ignored. Since there is a non-zero chance of exploring outside the node that the
point being queried exists in, the joint inclusion probability of any two points remains non-
zero. However, the joint inclusion probability can be substantially lowered for points that
are spatially close but on opposite sides of a split that occurs early in tree formation.

5. Comparison of Algorithms

In this section, the performance and spatial balance of these algorithms are compared.
This comparison is performed on simulated and real area frames. For simplicity, equal
probability sampling is used for all comparisons. In the simulated cases, all populations are
based on a bivariate uniform distribution of varying size distributed asX1 ∼ Uniform(0, 1)
andX2 ∼ Uniform(0, 1), withX1 independent ofX2, and a fixed sample size of 100. As an
application to real data, the U.S. Census Bureau’s 2010 block data are used. All calculations
are performed using the R package BalancedSampling (see Grafström and Lisic, 2016).

To evaluate performance, a comparison of the log run-times is performed between the
linear search and k-d tree implementations of the LPM2 algorithm, followed by a com-
parison between the run-times of the nearest-neighbor and ANN k-d tree implementations.
Since the ANN variants of LPM2 do not necessarily preserve the nearest-neighbor, a short
exploration of the effect of approximation on balance is performed. In this exploration, a
comparison of spatial balance is performed between simple random sample (SRS), LPM2,
and LPM2 approximations.

The log run-time for a k-d tree-based implementation of LPM2 is plotted against the
linear run-time in Figure 7. This figure shows a dramatic reduction in run-time, in particular
for a population size for 1,000,000 sampling units, the sample size is over eight orders of
magnitude faster. Sampling a population of this size takes approximately three seconds
using the k-d tree variant of LPM2, while the linear search implementation takes two and
a half hours. Through extrapolation, a population of size 100,000,000 takes half an hour
to perform with the k-d tree variant, while the linear search implementation finishes in
forty-two days.

Figure 7: Log run-times to sample 100 sampling units using the linear search and k-d tree
search based LPM2 methods from simulated populations with varying size distributed as
X1 ∼ Uniform(0, 1) and X2 ∼ Uniform(0, 1).

As opposed to the extreme reduction in run-time seen with the prior comparison, the
ANN speed reductions are considerably more modest (see Figure 8). In general, there
is little difference between the run-times between the single leaf check and both distance
approximations. This indicates a fairly early resolution to an acceptable ANN in these
cases. The two leaf check ANN method on the other hand is generally on par with the
exact nearest-neighbor implementation, indicating that for this population exact nearest-
neighbor searches seldom exceeded two leaves.

A comparison of balance is also performed between the k-d tree-based nearest-neighbor
and ANN methods. In this comparison, a few more levels are added to better understand
the relationship between the approximation and balance. An SRS of the same population is
provided as a reference. To estimate balance, 5,000 draws are performed for each sampling
algorithm and parameterization. The standard error for the balance statistic B is approxi-
mately 0.01 in the worst case.

The result of this simulation indicated that the spatial methods are uniformly much
more balanced than the SRS (see Table 1). Furthermore, the reduction in speed in the case
of the more restrictive distance based ANNs comes at little expense in balance. In the case
of time-based ANNs, the trade-off in balance is a bit more extreme, but unlike the more
restrictive distance ANN, there is little reduction in computational burden relative to the
exact nearest-neighbor LPM2.

The real data used for this research are the U.S. Census Bureau’s census block data
from the 2010 U.S. Census. These data are chosen due to their large size and the presence
of spatial correlation between sampling units. The unit being sampled is a census block,
the smallest areal unit available from the U.S. Census Bureau. The U.S. Census Bureau
maintains census blocks throughout the United States, but in this research only a subset
are used. This subset, which includes only the 48 contiguous states and the District of
Columbia, is used as the population. Even with this reduction, the population includes
11,007,989 census blocks.

Geospatial polygons for these data are available for download from the U.S. Census
Bureau with associated population and household size. For sampling, the centroids of the
polygons are used to provide point data through longitude and latitude. Because census
blocks with high population are likely to be close to other census blocks with high pop-

Figure 8: Run-times to sample 100 sample units using k-d tree-based LPM2 methods from
simulated populations with varying size distributed as X1 ∼ Uniform(0, 1) and X2 ∼
Uniform(0, 1).

Table 1: A comparison of the balance statistic calculated from 5,000 draws per algorithm
on a simulated population of 10,000 sampling units with sample size 100.

Algorithm Balance
LPM2 0.07

SRS 0.32

k-d Tree Time
Leaf Check

1 2 3 4
0.10 0.07 0.07 0.07

k-d Tree Dist.
Distance

1 0.1 0.01 0.001
0.10 0.10 0.09 0.07

ulation, these data exhibit a high degree of spatial correlation between adjacent sampling
units. In this experiment 5,000 samples of size 2,000 are drawn from the entire population.
In each draw, a Horvitz-Thompson estimator of the U.S. Population for the 48 contiguous
states is calculated. Owing to limitations of the software, each draw required rebuilding the
k-d tree, significantly increasing the run-time.

The results of this simulation are provided in Table 2. In these results, variance relative
to SRS is reduced by 9% for the approximate and 7% for the exact LPM2 sampling. Un-
fortunately, the sample variance for these results with 5,000 draws is sufficiently large to
make the differences insignificant at a 5% confidence level. The difference in run-time is
fairly insignificant with 45 seconds and 46 seconds for the time and distance based methods
respectfully, and 58 seconds for the exact method.

Table 2: The mean of sample variances of Horvitz-Thompson estimates of the U.S. Popu-
lation for the 48 contiguous states from a simulation of 5,000 draws.

Variance for Population Total
SRS k-d Tree k-d Tree Count k-d Tree Dist.

Leaf Check = 1 Dist. = 0.01
3.655e+14 3.399e+14 3.370e+14 3.312e+14

6. Discussion

In this paper, a new k-d tree-based implementation of the LPM2 algorithm and two ap-
proximations to this algorithm are presented. Details and examples of the tree structure
and nearest-neighbor searches are provided to allow for recreation of these methods. In
application to synthetic data, these algorithms provide a reduction of run-times by eight or-
ders of magnitude over the current LPM2 algorithm. These new implementations provide
dramatic reduction in computational complexity and a means to exchange computational
complexity for balance. The methods applied to U.S. Census census blocks show promis-
ing results, with variance reductions of 7-9% over a simple random sample. However, the
simulation in this case is not of sufficient size to warrant a more definite conclusion.

The introduction of k-d tree-based nearest-neighbor searches in LPM2 allows for the
application of spatially balanced sampling to frames consisting of up-to one billion sam-
pling units and possibly larger frames. Given the growth of “Big Data,” it is not inconceiv-
able for spatial sampling frames of this magnitude to be in use in the near-future. Although
not strictly in the domain of sample survey, this method does have immediate application
in the sampling of high resolution geospatial imagery as a data reduction tool. In this ca-
pacity, this method has already been used to accelerate kernel density based classification
of agricultural fields (see Lisic, 2015).

The acceleration of LPM2 does provide some immediately useful results; however,
there are still a large number of questions regarding the statistical properties of the approx-
imations. Future work will need to be done to better understand the relationship between
the approximation, inclusion properties, and spatial balance.

Extension of this work to SPCM and to some extent GRTS should also be explored.
In the case of SPCM, a simple replacement of the nearest-neighbor query with a k-d tree-
based query should provide substantial reduction in computational cost. On the other hand,
the use of k-d trees instead of quadtrees in GRTS should yield interesting results. In partic-
ular, k-d trees handle sparse data much better than quadtrees, provide better computational
characteristics, and lower memory requirements.

References

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R. and Wu, A. Y., 1998. “An optimal
algorithm for approximate nearest neighbor searching fixed dimensions.” Journal of the
Association for Computing Machinery (JACM) 45(6): 891–923.

Cressie, N. A. C., 1993. Statistics for Spatial Data. New York: Wiley.

Deville, J.-C. and Tille, Y., 1998. “Unequal probability sampling without replacement
through a splitting method.” Biometrika 85(1): 89–101.

Fattorini, L., 2006. “Applying the Horvitz-Thompson criterion in complex designs: a
computer-intensive perspective for estimating inclusion probabilities.” Biometrika 93(2):
269–278.

Grafström, A., 2012. “Spatially correlated Poisson sampling.” Journal of Statistical Plan-
ning and Inference 142(1): 139–147.

Grafström, A. and Lisic, J., 2016. BalancedSampling: Balanced and Spa-
tially Balanced Sampling. URL https://CRAN.R-project.org/package=
BalancedSampling, r package version 1.5.2.

Grafström, A., Lundström, N. L. and Schelin, L., 2012. “Spatially Balanced Sampling
through the Pivotal Method.” Biometrics 68: 514–520.

Grafström, A., Saarela, S. and Ene, L. T., 2014. “Efficient sampling strategies for forest
inventories by spreading the sample in auxiliary space.” Canadian Journal of Forest
Research 44(10): 1156–1164.

Kincaid, T. M. and Olsen, A. R., 2015. spsurvey: Spatial Survey Design and Analysis. URL
http://www.epa.gov/nheerl/arm/, r package version 3.1.

Lang, D., Klaas, M. and de Freitas, N., 2005. “Empirical testing of fast kernel density
estimation algorithms.” UBC Technical repor 2.

Lisic, J., 2015. Parcel Level Agricultural Land Cover Prediction. Ph.D. dissertation, George
Mason University.

Muja, M. and Lowe, D. G., 2014. “Scalable nearest neighbor algorithms for high dimen-
sional data.” Pattern Analysis and Machine Intelligence, IEEE Transactions on 36.

Stevens Jr, D. L. and Olsen, A. R., 2004. “Spatially balanced sampling of natural re-
sources.” Journal of the American Statistical Association 99(465): 262–278.

Sunter, A. B., 1977. “List sequential sampling with equal or unequal probabilities without
replacement.” Journal of the Royal Statistical Society Series C (Applied Statistics) 26(3):
261–268.

Tobler, W. R., 1970. “A computer movie simulating urban growth in the Detroit region.”
Economic Geography 46: 234–240.

