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Abstract 
Recent research on the use of M-estimation methodology for detecting and treating 
verified influential values in economic surveys found that initial parameter settings affect 
effectiveness. In this paper, we explore the basic question of how to develop initial 
settings for the M-estimation parameters. The economic populations that we studied are 
highly skewed and are consequently highly stratified. While we investigated settings for 
several parameters, the most challenging problem was to develop an “automatic” data-
driven method for setting the initial value of the tuning constant φ, the parameter with the 
greatest influence on performance of the algorithm. Of all the methods that we 
considered, we found that methods defined in terms of the accuracy of published 
estimates can be implemented on a large scale and yielded the best performance. We 
illustrate the methodology with an empirical analysis of 36 consecutive months of data 
from 19 industries in the Monthly Wholesale Trade Survey.   
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1. Introduction 
 

For the most part, business surveys publish totals and period-to-period change estimates. 
Some of the estimates are economic indicators while others may contribute to estimates 
of Gross Domestic Product. When the survey estimates are released monthly or quarterly, 
much of the data review is performed on a flow basis on the micro-data. In general, 
business populations are highly skewed, and the bulk of the analyst review therefore 
focuses on the larger units that contribute the most to the overall levels (Thompson and 
Oliver 2012).  It is possible for a smaller business with a large sampling weight to report 
an unexpectedly large or small value for a collected item. We define such an observation 
as influential if its value is correct but its weighted contribution has an excessive effect 
on the estimated total or period-to-period change. Failure to “treat” such verified 
influential values may lead to substantial over- or under-estimation of survey totals, and 
the resultant change estimates. “Treatment” reduces the variance in a classic bias versus 
variance trade-off motivated by the desirability of low variance for economic indicators.   
 
When an influential value is detected, the mitigation strategy depends on whether the 
subject matter experts believe the observation is a one-time phenomenon or a permanent 
shift. If the influential value appears to be an atypical occurrence for the business, then 
the influential observation may be replaced with an imputed value or simply excluded 
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from the imputation base. If the influential value persists, indicating a permanent change, 
then methodologists adjust its sampling weight. Ideally, the replacement (imputed) value 
or the adjusted weight should be determined using an objective criterion that optimizes a 
precision measure. 
 
M-estimation produces an adjusted value that minimizes the design-based estimator of 
the mean squared error (MSE). The procedure itself is extremely flexible, allowing for 
detection of large, small, or both large and small influential values, accommodating 
variations in the prediction models, and providing control over the outlier-detection 
region via numerous parameters (each with a specific function). Beaumont and Alavi 
(2004) and Beaumont (2004) developed M-estimation procedures for complex survey 
data and demonstrated the effectiveness of these methods using simulated data.   
 
 The flexibility of M-estimation and the option for two influential value “treatments” 
provides survey analysts with repeatable solutions. Mulry, Oliver, and Kaputa (2012, 
2013, 2014) tested several variants of M-estimation on simulated data modeled from two 
industries in the Monthly Retail Trade Survey (MRTS) conducted by the U.S. Census. 
The results over repeated samples were excellent in terms of reduced MSE after 
extensive fine-tuning of all input parameters. 
 
The previous studies highlighted the importance of setting the appropriate parameters for 
the M-estimation algorithm. This paper proposes methods for setting parameters for the 
M-estimation algorithm, using a variety of common statistical data analysis tools. The 
methods have the advantage that they can be implemented on a large scale. We explore 
the effectiveness of the resultant parameters on empirical data from the Monthly 
Wholesale Trade Survey (MWTS) and identify the method that yields the best 
performance.  
 

2. M-Estimation Method 
 
The description M-estimation method (Beaumont and Alavi 2004) in our application 
follows Mulry, Oliver, and Kaputa (2012, 2014). First, we introduce the notation. For the 
ith business in a survey sample of size n for the month of observation t, Yti is the collected 
characteristic (e.g., revenue), wti is its survey weight (which may or may not be 
equivalent to the inverse probability of selection), and Xti is a variable highly correlated 

with Yti, such as previous month’s revenue.  The monthly total Yt is estimated by tŶ  

defined by  ti
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For ease of notation, we suppress the index for the month of observation t in the 
remainder of this section. In our empirical applications, the survey weight wti is the 
design weight since the missing data treatment is imputation and no other weight 
adjustments are made; see Mulry, Oliver, and Kaputa (2012, 2014). 
 
M-estimators (Huber 1964) are robust estimators that come from a generalization of 
maximum likelihood estimation. The application of M-estimation examined in this 
investigation is regression estimation. The M-estimation technique proposed by 
Beaumont and Alavi (2004) uses the Schweppe version of the weighted generalized 
technique (Hampel et al. 1986, p. 315 – 316). The estimator of the total using this 



 
 

   

approach is consistent for a finite population since it equals the finite population total 
when a census is conducted (Sarndal et al. 1992, p. 168).  
 
A key assumption of the M-estimation approach is that yi given xi is distributed under the 

prediction model m with   iiim xxyE | and   .| 2iiim vxyV   In our application, yi 

is the current month’s value; xi is the previous month’s value, and the regression model 
does not include an intercept. With retail trade, the regression of current month’s sales on 
the previous month’s sales tends to go through the origin (Huang 1986, 1984). 
 
Briefly, the method estimates MB̂ , which is implicitly defined by 
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The variable xi may be a vector and the regression estimation model 

)ˆ)ˆ(( MM BxyBe iii  may or may not include an intercept. Our applications use a no-

intercept linear regression model where the independent variable is the previous month’s 
tabulated value for the same item. This ratio model is commonly used for item imputation 
in business surveys, as prior period values are often very good predictors of the current 
period value when data collection is fairly frequent (e.g., weekly, monthly, or quarterly) 
and the intercept term is usually not significant.   
 
The role of the Huber function  is to reduce the influence of units with a large weighted 

residual )ˆ( MBri . We focus on two choices for the function ψ, Type I and Type II Huber 

functions, and describe their one- and two-sided-forms. The one-sided Type I Huber 
function is 
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where  is a positive tuning constant. This form is equivalent to a Winsorization of 

)ˆ( MBri . Detection of observation i as an influential value by M-estimation with the Huber 

I function occurs when ݎ௜൫ܤ෠ெ൯ ൐ ߮. In the two-sided Huber I function )ˆ( MBri  is 

replaced by its absolute value )ˆ( MBri .   

The weight adjustment corresponding to the Type I Huber function ψ above is 
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An undesirable feature of using the Type I Huber function is that the unit’s adjusted 
weight may be less than one if the influential value is very extreme, thereby not allowing 
the influential value to represent itself in the estimation. The Type II Huber function ψ 
ensures that all adjusted units are fully represented in the estimate. The one-sided Type II 
Huber function is 
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where  is a positive tuning constant. Detection of observation i as an influential value by 

M-estimation with the Huber II function occurs when ݎ௜൫ܤ෠ெ൯ ൐ ߮.  In the two-sided 

Type II Huber function )ˆ( MBri  is replaced by its absolute value )ˆ( MBri . This form is 

equivalent to a Winsorization of )ˆ( MBri , cf. the Type I Huber function.  
   
Solving for MB̂ requires the Iteratively Reweighted Least-Squares algorithm in many 
circumstances. For certain choices of the weights and variables, the solution is the 
standard least-squares regression estimator. The M-estimation algorithm takes into 
account both the size of an observation’s weight as well as its weighted value when 
designating influential values. Typically, the sampling rate for small businesses is lower 
than for larger businesses because there are more small businesses. Therefore, the smaller 
businesses typically have higher weights. If two observations have the same unusually 
high amount of weighted month-to-month change, the M-estimation method is less likely 
to designate the one with the lower weight as an influential value. 
 
With M-estimation, the user has a choice of adjusting the weight of the influential value 
or adjusting its value. The weight adjustment for the Type II Huber function above has 
the appealing feature of always being greater than one and is given by 
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For an adjustment to the influential value, Beaumont and Alavi (2004) use a weighted 
average of the robust prediction MBxi

ˆ  and the observed value yi of the form  
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Using numerical analysis, Beaumont (2004) finds an optimal value of the tuning constant 
φ by deriving and then minimizing a design-based estimator of the mean-square error 
(MSE). At each iteration, the algorithm estimates the bias by comparing the predicted 
total to the original total and estimates the variance using the residuals from the robust 
regression. The minimization does not require a generating data model that holds for all 
observations (including the influential value).  
   



 
 

   

3. Setting algorithm parameters 
 
The M-estimation algorithm discussed in Section 2 requires settings for Q, hi, vi, the 
function ψ, and an initial value of the tuning constant φ. In this section, we propose 
methods for setting the parameters for the M-estimation algorithm discussed in Section 2, 
providing illustrative examples for each proposal.  Table 1 summarizes the parameters for 
the M-estimation algorithm. 
 
We suggest using the default settings for the parameters Q=1 and ݄௜ ൌ ሺݓ௜ െ 1ሻඥݔ௜ in 
the SAS software developed by Beaumont (2007) for implementing the method. The 
following sections explore the potential impact of different settings for the other 
viandφ. The importance of the selections of viandφ on the effectiveness of the 
algorithm is discussed in detail in Mulry, Oliver, and Kaputa (2014). In this paper, we 
focus on setting the most important parameter, the initial φ. 
 

Table 1. M-estimation algorithm parameters 
 

Parameter Parameter Function Values Discussed 
Q Constant =1 (default) Below 
hi Unit weight ൌ ሺݓ௜ െ 1ሻඥݔ௜  

(default)  

Below 

vi Model error underlying 
regression estimator  

= 1 or xi Section 3.1 

 Huber function Huber I or Huber II Section 3.2 

 Tuning constant (determines 
starting point for detection 
region)  

User provides initial 
value and program 
calculates optimal value 

Section 3.3 

 
 
For our investigation of a data-driven method for setting the initial φ, we use 36 
consecutive months of empirical (edited/imputed) values of sales and inventory from 19 
industries in the MWTS for the presented analyses. The MWTS is a monthly survey that 
collects sales and inventories and uses a stratified SRS-WOR design, with industry as the 
primary strata and unit size group strata defined within the industry strata. Updating the 
sample to include new businesses and remove failed businesses reduces coverage bias 
and keeps the sample from attrition. A new sample for each industry is selected 
approximately every five years. There is very little overlap in small businesses in samples 
selected for adjacent periods, but the overlap can be quite high for large businesses with 
substantive inventories. Micro-review procedures are primarily ratio edits, followed by 
the Hidiroglou Berthelot (1986) edit used to identify within-imputation-cell outliers and 
determine their treatment, as well as to create the imputation base (Hunt, Johnson, and 
King 1999) when sufficient returns in an industry have been processed. The MWTS 
publishes industry level tabulations. Influential values are considered at the industry level 
rather than the industry-size-stratum level. Treatment of influential values is the final step 
of the estimate review process. Hence, the methods described here are developed to 
complement, not replace, the HB edit. For more details on the MWTS estimation and 
review procedures, see 
http://www.census.gov/wholesale/www/how_surveys_are_collected/monthly_methodolo
gy.html  



 
 

   

3.1 Tuning constant φ 
 
3.3.1. Effect of the Initial Value of the Tuning Constant on Detection regions   
Recall that the M-estimation algorithm finds an optimal value of φ by minimizing the 
design-based estimator of the MSE. An observation’s weighted residual has to exceed the 
initial φ for the algorithm to consider it as a possible influential value. Viewing the MSE 
as a function of φ implies that a value of φ corresponds to a “treated” value for each 
observation with a weighted residual greater than φ. When a minimum exists, the initial 
value of φ has to be “close enough” to the minimum for the algorithm to find it. If the 
initial φ value is too low and the sample does not contain any influential values, the 
algorithm can fail to converge or can converge to zero (or a very small number). If the 
initial φ is larger than all the weighted residuals, the algorithm does not find the minimum 
MSE because the MSE is a constant function in the neighborhood of φ. 
 
Figure 1 uses sample data for one month selected from a simulated MRTS industry to 
illustrate the MSE as a function of φ in a sample without an induced influential value. 
Figure 1 also shows the effect of an influential value that is induced in the same sample 
by adding four different amounts to a unit selected at random from those with a sampling 
weight of 60 (i.e., a “small” business). When there is no influential value, the MSE 
function has a slope of zero since it is a constant function of φ equal to 5.97 × 1013 
(although the MSE may appear equal to zero on the scale used in Figure 1).  As the 
amount added to the unweighted observation to induce an influential value increases from 
2 million to 8 million, the curve shifts as does the value of φ where the minimum MSE 
occurs. Notice that with an initial φ set at about 470 million, the algorithm would not find 
the minimum MSE when any one of the four induced influential values were present. 
Also, notice that for the algorithm to find the minimum MSE for all four induced 
influential values, the initial φ must be approximately 100 million or less.  

 

 

Figure 1. MSE as a function of the tuning constant φ when no influential value is present 
(MSE has a constant value of 5.97 × 1013) and when an influential value is induced by 
adding four different amounts to an unweighted observed value with weight 60. Data is 
from a sample selected for one month from a simulated MRTS industry. 



 
 

   

Figure 2 uses unweighted data from a sample for one month selected from a simulated 
MRTS industry to illustrate the detection regions for the application of the algorithm in 
the case where there is no predetermined (identified) influential value in the sample. In 
these figures, we selected a low value and a high value of the initial φ via graphical 
analysis. The chosen low value was expected to force the algorithm to run on the studied 
data whereas the high value was selected to be a value in the area where the MSE levels 
were a constant function of φ.   
 
The size of an observation’s weight as well as its weighted value both affect whether it 
will be designated as influential by M-estimation. The unweighted values of sales from 
smaller businesses tend to be lower than for larger businesses due to stratum weighting 
differences, even for those cases identified as influential via M-estimation. However, this 
is not universally true in an ongoing sample. For example, when the new sample is 
introduced, the smaller businesses at the time of frame determination will likely have 
large weights and low probability of selection, whereas the large businesses will be 
included with certainty or with high probability (small weights). However, as the sample 
matures, selected small businesses may become larger – in some cases reporting the same 
level of total receipts as the certainty large businesses. These “stratum jumpers” therefore 
influence estimated totals and their weights may be adjusted (reduced) accordingly, thus 
causing more variability in the weights for the smaller businesses.     
 
Figure 2 overlays the boundaries of the detection regions obtained with M-estimation 
with a low initial φ and M-estimation with a high initial φ. The unweighted sample 
observations used to form the detection regions are shown as gray dots with the x-axis 
representing the previous month’s value and the y-axis representing the current month’s 
value. The least squares regression line for the model used in the M-estimation 
application has been added. For the given sample, the addition of a single observation 
above the black line, which may be dash or solid, will cause it to be flagged as influential 
and adjusted. The dotted vertical bar marks the largest observation with a weight greater 
than one in the sample and population; that is, all observations to the right are guaranteed 
to have a weight of one. 
 
Figure 2 shows that the detection region obtained using the M-estimation-high φ is much 
more restrictive and does reduce bias. The close proximity to the regression line M-
estimation-low φ reflects the trimming that both methods do to minimize the MSE 
through lowering the variance at the cost of introducing a small bias. Notice that the 
algorithm rarely identifies large unweighted observations (those with wi approaching 1) 
as influential. None of these large observations has a weighted residual that exceeds the 
initial high φ.   
 
For small sampled business, large changes between the current and prior values for the 
same unit are not atypical.  For this reason, it is crucial to set the initial φ to be the 
weighted distance between an observed and predicted value in the current month 
expected to lead to a statistically significant change in the estimated total. The 
comparison to the prediction is especially important, as this reduces effects of industry-
wide trends and seasonal effects. Therefore, the algorithm requires that the initial φ not be 
too high or too low, but, as Goldilocks says, just right.   
 
When only one influential value is present in simulated samples, the effectiveness of the 
M-estimation algorithm is sensitive to the choice of the initial tuning constant φ since the 
initial φ determines the lower boundary of the detection region. However, in simulations 



 
 

   

of samples with two high influential values, we found that when we fixed one influential 
value and let the second one vary, the detection region for the second one did not appear 
sensitive to the initial φ (Mulry, Oliver, and Kaputa 2012). 
 
 

   

Figure 2. Lower Boundaries of Detection Regions for high and low initial φ. Data is 
from a sample selected for one month from a simulated MRTS industry. 
 
 
The goal when setting the initial tuning constant φ is to be high enough to avoid detecting 
natural variation as influential, but low enough to detect truly influential values. Setting 
the initial φ too high may result in the algorithm failing to detect influential values lower 
than the initial φ.  When none of the values in the sample is larger than the initial φ, the 
algorithm runs for one iteration and then stops.  In this circumstance, the MSE is a 
constant function in a neighborhood of the initial φ, and the algorithm continues to run 
only when it detects a change in the MSE in the proximity of the initial φ. 
 
On the other hand, setting the initial φ too low causes the algorithm to give the influential 
designation to observations not considered influential. This occurs because the algorithm 
achieves a minimum MSE when there is no influential value by trimming about 0.05 
percent of the observations for a very small reduction in the MSE. In an ongoing survey, 
an initial φ that is too low may also cause convergence problems in a month following an 
adjustment if the unit returns to its more stable level from two months earlier. In this 
case, the adjusted value will appear to be unusually low.  In some cases, both one-sided 
and two-sided functions  have convergence problems (Mulry, Oliver, and Kaputa 
2014).   
 
The decision-making process for determining an initial value of φ is not difficult when 
the results are known – or when the number of studied subpopulations is fairly small. 
However, the MWTS application comprises 19 industries, each requiring its own set of 
parameters. To implement the algorithm in practice, we needed to find an automated 
data-driven method of setting these initial values. 
 



 
 

   

Our first concern was seasonality. The MWTS series is seasonal, so we were uncertain 
whether this seasonality would extend to the M-estimation weighted residuals--which 
would require additional consideration in the parameter settings.  However, only one of 
the 19 studied industries exhibited any consistent seasonal patterns in their residuals, as 
detected by the QS statistic test for seasonality at lags 12 and 24 after appropriate 
differencing at =0.05 (Monsell and Blakely 2013). Of course, because one would expect 
to reject at least one test, we concluded that there is no convincing evidence of 
seasonality in the weighted MWTS residuals (Mulry, Kaputa, Thompson 2016). 
 
3.2 Automated Data-Driven Methods of Obtaining Initial φ 
The first attempts of our quest to find a general method for setting the initial φ relied on 
the M-estimation weighted residual distributions. Exploratory data analyses provided 
solid evidence against normality, so we attempted to find alternative distributions that 
provided a better fit for the residuals. As mentioned in Section 3.1, all the weighted 
regression models of current month’s value on previous month’s value did not have an 
intercept and used the regression weight equal to the sample design weight divided by the 
prior month’s observation. The data for each model included the certainty units. 
  
Unfortunately, no single distribution worked well for all studied populations and, in many 
cases, the best fit appeared to be a complex blending distribution with no finite moments 
(see Arvanitis 2015). We also explored fitting regression models within industry/strata. 
For this, the residuals from all the industry/strata level models were combined to form an 
industry level set that was comparable to the residuals from the industry level model. The 
industry level and industry/strata level weighted robust regression models were fit for all 
19 MWTS industries over 36 months. The Kruskal Wallis test (non-parametric version of 
ANOVA) was used to compare the differences between the two groups. While 
differences did exist, no clear pattern of differences between the two groups appeared 
(Mulry, Kaputa, Thompson 2016). Therefore, we decided to use the residuals from the 
weighted robust regression models fit at the industry level.  

In the end, we settled on approaches that incorporate the survey design requirements into 
the parameter settings. The MWTS design has a national level coefficient of variation 
(cv) requirement of 0.01; selected industries have less restrictive cv. requirements, 
ranging from 0.04 to 0.055. Assuming a constant variance (a usual assumption in ongoing 
surveys), an increase in the cv above the expected national level would likely be an 
attribute of a change in the total estimate (from the prior) period. An economic change 
could also contribute, as well as the effect of an influential value (or values) which should 
be investigated and possibly adjusted. 
 
We use the half-width of 90% confidence interval on the previous month’s total. Values 
outside of the half-width should lead to a statistically significant change in the current 
month total. We considered two high-level methods of obtaining the confidence interval 
half-width: (1) use the cv publication requirement for national level totals to derive an 
estimated standard error; and (2) estimate the standard error directly from the predicted 
current month values. Thus, the standard errors obtained from (2) will be larger than the 
(1) counterparts.  
 
This led to the following options considered for calculating the initial φ:  

1) (CV_EST) Set the initial φ as the product of the coefficient of variation of the 
estimated total (cv), the width of the 90% confidence interval using the t-



 
 

   

distribution, and the previous month’s estimated total ෠ܶ௧ିଵ, serving as an 
estimate of the current month’s total: Initial φ = cv*1.7* ෠ܶ௧ିଵ. 
 

2) (CV_PRED) Use the same formula as in 1), but replace ෠ܶ௧ିଵ by an estimate of 
the current month’s total that uses the estimated coefficient ߚመ௧ from the weighted 
robust regression of the current month yti on the previous month xti:  
Initial φ = cv*1.7*∑ߚመ௧ݔ௧௜   
 

3) (ST_EST) Set the initial φ as the width of the 90% confidence interval of the 
previous month’s estimated total ෠ܶ௧ିଵ using the normal distribution and assuming 
෠ܶ௧ିଵ is serving as an estimate of ෠ܶ௧: Initial φ = 1.65*StdErr( ෠ܶ෠௧ିଵ), 
where StdErr( ෠ܶ௧ିଵ) is computed with the Taylor linearization estimator 
implemented in PROC SURVEYMEANS on the prior period sample-weighted 
MWTS microdata, with the MWTS design strata and incorporating the finite-
population factor correction (SAS/STAT(R) 9.22 User's Guide 2016). 
 

4) (ST_PRED) Use the same formula as in 3), but replace ෠ܶ௧ିଵ by an estimate of the 
current month’s total that uses the coefficient ߚመ௧ of the weighted robust 
regression estimate of the current month yti on the previous month xti:  
Initial φ = 1.65*StdErr(∑ߚመ௧ݔ௧௜), 
where standard errors are computed analogously to ST_EST, but sample-
weighted predicted current period values from the M-estimation regression 
replace the prior-period MWTS values in the computations.  

 
4. Results 

 
Our first concern was algorithm convergence issues with the four considered 
applications, specifically converging to zero (and flagging all observations) or failing to 
converge. Such problems appear in three of the 2,736 applications (4 options for setting 
the initial φ to 36 consecutive months of data for 19 MWTS industries):   

 For one application of the CV_PRED option in Industry 11, the algorithm 
converged to zero.  

 The algorithm failed to converge twice, one application of the CV_EST option in 
Industry 13 and one application of the CV_PRED option in Industry 2.   

 
We do not see a pattern so we conclude that these three occasions do not indicate a 
problem with the settings we have selected for the algorithm. 
 
Table 2 shows the maximum number of influential values flagged in one month and total 
number of values flagged in all 36 consecutive months when the algorithm converged by 
option for setting the initial φ for 19 MWTS industries.  The results of Table 2 are 
summarized as follows: 
 In nine MWTS industries, the results using the four options for settings of the initial 

φ agree by not flagging any influential values in any of the 36 consecutive months.   
 SE_PRED detects influential values on two occasions: once in Industry 2 when four 

influential values are flagged and once in Industry 15 when six influential values are 
flagged.   

 SE_EST does not detect any influential values in any month for the 19 industries.   



 
 

   

 The options CV_EST and CV_PRED find more influential values than their 
respective SE counterparts do.   

o In six industries, these two options share the same maximum detected in a 
month and had the same total number of detections.  

o CV_PRED finds influential values in two months in Industry 2 and 1 month 
in Industry 16 when CV_EST does not. 

 
Table 2. Maximum number of influential values flagged in one month and total number 
of values flagged in all 36 consecutive months when the algorithm converged by option 
for setting the initial φ for 19 MWTS industries 
 

CV_EST CV_PRED SE_EST SE_PRED 

Industry Max Sum Max Sum Max Sum Max Sum 

1 0 0 0 0 0 0 0 0 

2 0 0 4 5 0 0 4 4 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 1 4 1 4 0 0 0 0 

7 0 0 0 0 0 0 0 0 

8 7 7 7 7 0 0 0 0 

9 0 0 6 6 0 0 0 0 

10 1 1 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

12 1 2 1 2 0 0 0 0 

13 1 2 1 3 0 0 0 0 

14 0 0 0 0 0 0 0 0 

15 2 3 2 3 0 0 6 6 

16 0 0 4 4 0 0 0 0 

17 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 

19 1 2 1 2 0 0 0 0 
 
Table 3 presents the mean and standard deviation of the settings of the initial φ from the 
four options when applied to the 36 consecutive months of data from 19 MWTS 
industries. Note that CV_EST and the CV_PRED have lower means and lower standard 
deviations than SE_EST and SE_PRED across the 36 months for the 19 MWTS 
industries, which is one reason that the CV_EST and CV_PRED flag influential values 
more often. By design, the SE methods yield higher estimated standard errors since this 
approach computes industry-specific standard errors, more closely approximating the 
0.04-0.05 industry reliability restrictions for MWTS alluded to at the beginning of this 
section. Another factor could be the standard error estimation procedure. With the 
monthly surveys, the standard errors can be quite variable due to the small sample size 
and the changing sample composition. Consequently, most of our indicators publish some 
form of average variance (or cv) to smooth away some of the noise.   
 



 
 

   

Table 3. Mean and standard deviation of the settings of the initial φ from the four options 
when applied to the 36 consecutive months of data from 19 MWTS industries (100 
millions) 
 

  CV_EST CV_PRED SE_EST SE_PRED 

Industry Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

1 4.45 0.70 4.37 0.68 12.85 3.15 12.07 3.06 

2 1.20 0.10 1.09 0.18 3.37 0.23 2.79 0.90 

3 1.52 0.28 1.50 0.27 8.09 1.51 7.93 1.55 

4 5.62 0.52 5.42 0.65 15.50 1.57 14.41 2.04 

5 3.09 0.35 3.03 0.37 12.40 1.51 11.99 1.23 

6 1.98 0.27 1.95 0.26 7.11 1.27 6.94 1.37 

7 4.77 0.47 4.56 0.68 12.96 2.17 11.92 2.75 

8 1.41 0.16 1.35 0.18 5.70 0.70 5.29 0.82 

9 5.82 0.83 5.23 0.86 25.17 3.66 21.95 3.44 

10 3.50 0.39 3.37 0.52 21.49 3.15 20.48 3.83 

11 1.29 0.07 1.25 0.14 8.51 0.55 8.02 1.48 

12 5.89 0.37 5.82 0.43 20.24 3.70 19.10 4.86 

13 2.16 0.23 2.02 0.40 10.17 1.46 9.17 2.32 

14 8.69 0.81 8.53 0.98 40.43 3.32 39.47 4.96 

15 3.13 0.56 2.88 0.61 13.69 3.46 11.20 4.17 

16 1.47 0.14 1.42 0.18 5.74 0.71 5.42 0.97 

17 8.42 1.39 8.27 1.37 26.25 4.09 25.17 4.44 

18 1.77 0.23 1.75 0.23 7.66 1.10 7.57 1.12 

19 3.36 0.45 3.25 0.52 13.83 2.15 13.11 2.24 
 
 
For further insight, Figure 3 shows the maximum weighted observed residual from the 
robust regression of the current month’s weighted observations on the previous month’s 
weighted observations and the settings of the initial φ from the four options by month for 
Industry 2. We see that the settings of the initial φ from the CV_EST and SE_EST are 
lower than the settings from CV_PRED and CV_PRED, but are still low enough that they 
are smaller than the maximum weighted observed residual, triggering the M-estimation 
algorithm. However, the values of the initial φ are much lower in these months when the 
algorithm runs than in other months. We concluded that the options using the PRED 
values have high variability, which is an undesirable characteristic.  
 
In these applications, both CV methods work approximately the same and appear to be 
better for MWTS than the SE methods. However, the CV_EST option is more stable than 
the CV_PRED option. Moreover, the CV_EST is easy to implement and avoids a more 
complicated implementation of using the results of a robust regression of the current 
month on the previous month. Finally, the CV_EST option is the easiest of the four 
approaches to explain and to modify. Thus, we recommend using the CV_EST option for 
the MWTS.  
 



 
 

   

 
Figure 3. Plot of maximum residual (black) and values of initial ߮ from four methods for 
36 consecutive months of MWTS Industry 2. 
 

5. Summary 
 
Using M-estimation to identify and treat influential values in a survey setting is appealing 
from both methodological and statistical perspectives. The flexibility of weighted M-
estimation makes it useful for a wide variety of data models, and our empirical results 
appear to support the algorithm’s robustness to model misspecification. On the other 
hand, this same flexibility has the disadvantage of introducing some complexity in 
implementation. First, there are situations when the algorithm has convergence issues, but 
careful setting of the parameters for the algorithm appears to reduce this problem and 
sometimes avoids it all together. These convergence issues tend to be more difficult to 
avoid when the algorithm uses a two-sided function ψ implementation than with a one-
sided function. If the occurrence of both an unusually high and an unusually low 
influential value in the same month causes lack of convergence, then an estimate with no 
adjustments is justified because the two influential values offset to result in the bias being 
approximately zero. 
 
In this paper, we explore the basic question of how to develop initial settings for the M-
estimation parameters, focusing primarily on economic data applications. The 
populations that we studied are highly skewed and are consequently highly stratified. 
Because of this, the assumed data model that we use in our M-estimation application – a 
weighted robust regression model that uses survey weights and the predictor variable as 
regression weights – is misspecified when applied to population data. Even so, we found 
several advantages of using this data model over the simpler ordinary least squares (equal 
variances) model.  
 
Developing an “automatic” data-driven method for setting the initial value of the tuning 
constant φ posed a more challenging problem. The residuals of the weighted robust 
regression model exhibited only minimal seasonality when applied monthly. Since this 
parameter has the most impact on the performance of the detection of influential values, 
it is important to provide simple-to-use and data-based methods that are robust. Of all the 
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methods that we considered, we found that methods defined in terms of the accuracy of 
published estimates yielded the best performance.  
 
While we had success defining the initial φ in terms of estimated standard errors and 
coefficients of variation, another option to consider is whether the observation will by 
itself change the published estimate beyond what would be attributed to sampling error. 
Other researchers may want to examine the method for determining a data-dependent 
tuning constant developed by Wang et al. (2007). For more details, see Mulry, Kaputa, 
Thompson (2016).  
 
The next step in our research is to apply the method in a side-by-side test. We will 
provide guidelines to the subject matter experts who have the responsibility of reviewing 
an adjustment proposed by the M-estimation algorithm and deciding on whether to 
incorporate it in the estimation each month. The dialog with subject matter experts during 
the test and the application of the algorithm in more industries may lead to refinements, 
but the basic approach appears very effective. 
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