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Abstract 
 
Hot deck imputation provides a flexible approach to dealing with missing data that 
retains multivariate relationships without making explicit parametric model assumptions. 
Instead, hot deck methods impute missing values (recipients) using reported values 
(donors) from a similar unit. Under ideal conditions, each imputation cell contains many 
candidate donors for each recipient. Unfortunately, in practice, this is not always the case. 
In many instances, there are more recipients than donors within an imputation cell, so that 
the same donor record may be selected for different recipients.  Oftentimes, a limit is set 
on the number of times a donor can be used. The optimal choice for this limit can be a 
topic of large debate and generally is determined subjectively by subject-matter experts.   
 
In this paper, we explore a more objective way to determine the optimal choice for donor-
use limits when implementing random hot deck imputation (HDR), concentrating 
primarily on the highly skewed distributions typical of establishment surveys. Through 
simulation, we investigate the interplay of several factors that may affect the optimality 
of this limit, such as varying sample sizes (donors, recipients, and total units), varying 
response mechanisms, and varying response rates. We evaluate the results by comparing 
the bias and the goodness-of-fit of imputed data obtained from varying donor limit 
scenarios. 
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1. Introduction 
 
Various surveys within the Economic Directorate at the U.S. Census Bureau1  employ 
some version of hot deck imputation to account for unit or item nonresponse. Hot deck 
imputation provides a flexible approach to dealing with missing data that retains 
multivariate relationships without making explicit parametric model assumptions. 
Instead, hot deck methods impute missing values (recipients) using reported values 
(donors) from a similar unit.  
 
Under ideal conditions, each imputation cell contains many candidate donors for each 
recipient. Unfortunately, in practice, this is not always the case. In many instances, there 
are more recipients than donors within an imputation cell, so that the same donor record 
may be selected for different recipients. Oftentimes, a limit is set on the number of times 
a donor can be used. The optimal choice for this limit can be a topic of large debate and 
generally is determined subjectively by subject-matter experts. This phenomenon is not 
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unique to just the Economic Directorate at the U.S. Census Bureau; as Andridge and 
Little (2010) point out, “The optimal choice of [the donor limit] is an interesting topic for 
research…” They also indicate that the choice is more than likely related to an accuracy-
precision trade off. There is limited literature available offering guidance on setting this 
limit. For example, Joenssen and Bankhofer (2012) look into several different donor limit 
schemes applied to multivariate normal data for two different versions of hot deck, 
random and nearest neighbor. The response rates considered in their study were 80-
percent or higher, which often leads to more donors than recipients in the studied 
imputation cells. They found that for random hot deck, which is the focus of our research, 
the choice of a donor limit was “frivolous.” In establishment surveys, we generally do not 
have normal data. We are particularly interested in the case of more recipients than 
donors, which we find in sparsely reported detail data. Our research expands upon 
Joenssen and Bankhofer’s (2012) findings by utilizing highly skewed simulated 
multivariate data modeled from two business populations. The multivariate data includes 
a total variable, total receipts (RCPTOT), and detail variables that sum to the total, 
Detail1 – Detail5. We specifically address the case where there are more recipients than 
donors. Additionally, we look at several different donor limiting schemes including a 
different dynamic donor limit that accounts for the ratio of donors to recipients 
(nonrespondents) as suggested in Kalton and Kish (1981).   
 
In Section 2 we present the studied random hot deck methodology and the donor limits 
we will evaluate. In Section 3 we present our simulation design and evaluation criteria. 
Our results are then discussed in Section 4. We conclude in Section 5. 
 

2. Hot Deck Imputation 
 
Hot deck imputation procedures use reported values from the current sample to impute 
for missing values. Sample units are classified into disjoint groups (imputation cells) 
based on variables available for all units in the sample that are correlated with the 
missing values. This classification implicitly assumes that nonrespondents and 
respondents are from the same distribution within each imputation cell, i.e., that the 
response mechanism is missing-at-random within imputation cell (Ford, 1983). Units are 
classified as either donors or recipients. Donors are observations that provided usable 
values for the variable(s) of interest, whereas recipients did not provide usable value(s) 
and need an imputed value(s) provided by a donor.   
 
There are many forms of hot deck imputation that have various ways of matching donors 
with recipients. In this paper, we focus on random hot deck imputation (HDR), the 
simplest form of hot deck imputation. With this method, a donor is selected at random for 
each recipient within an imputation cell. This can be thought of as taking a simple 
random sample of size r from d where r is the number of recipients and d is the number 
of donors in the imputation cell (Kalton and Kish 1981). 
 
When selecting the random sample, the sampling can be done with or without 
replacement. Ideally, there are more donors than recipients so that without replacement 
random sampling can be used to minimize variance (Kalton and Kish 1981). However, 
when there are fewer donors than recipients sampling without replacement will not assign 
a donor to every recipient. In this situation, a backup method (e.g., cold-deck or warm-
deck) and/or cell collapsing can be used. If the former is used, then the backup method 
should be considered to be a viable alternative; in the latter, collapsing criteria should 



preserve the missing at random cell properties. If neither approach is feasible, the other 
alternative is to allow a donor to be used more than once, that is to use with-replacement 
sampling. To avoid overuse of any particular donor when with-replacement sampling is 
used, often donor limits are used in practice. These limits fix the maximum number of 
selections for each donor, removing it from the set of donors available for imputation 
when the limit is achieved. 
 
For our research, we investigate the effects various donor limits have on the parameters 
of interest. We begin with the two most “extreme” options:  without-replacement 
sampling and (unrestricted) with replacement sampling. Without-replacement sampling 
assigns a donor limit of one (DL1). Once all donors have been selected, the backup 
method is implemented for the remaining recipients. For RCPTOT our backup method is 
the cell mean:   
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where c is the imputation cell, k is the kth donor, and dc is the number of donors in 
imputation cell c. For the details, we use a ratio imputation method: 	
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where j is the jth detail and RCPTOTrecipient is the population value of RCPTOT for the 
recipient. Using the population value could result in a much more precise imputed value 
than we would observe in practice, where the recipient’s value of RCPTOT could have 
been imputed. DL1 is equivalent to a simple random without replacement sample of size 
r from d and employing a backup method when no donors remain. To contrast this, we 
look at no donor limit (DLN), which is equivalent to taking a sample of size r with 
replacement from the d. 
 
Commonly in practice if DL1 seems to be relying on the backup method too often or if a 
backup method is unavailable, an arbitrary donor limit is assigned based on trial and error 
or subjective opinion. In a similar vein, we consider a donor limit of two (DL2), which 
we chose based on the minimum response rate we considered in this study, 40-percent.    
 
Of course, the performance of random hot deck imputation with subjectively determined 
donor limits can vary considerably between data sets. Using a dynamic (data-driven) 
approach to determine donor limits as proposed by Joennsen and Bankhofer (2012) or 
Kalton and Kish (1981) is consequently appealing. Here, we considered two dynamic 
limits modified from Kish and Kalton (1981).The dynamic donor limit (DLD) sets the 
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ቓ  where r is the number of recipients and d is the number of donors. 

Note that if there are more donors than recipients this limit is set to one and is equivalent 
to a simple random sample without replacement. One nice attribute about this limit is the 
ceiling function usage ensures that a backup method is never used. Oftentimes there is 
reluctance to use a single donor more than one time while there are unused donors; a 
downside of this approach is that it can result in some donors being used multiple times 
while others may not be used at all.  
 
The second donor limit approach combines the DLD donor limit with systematic 
selection of donors, as discussed in Kalton and Kish (1981). We denote this as the 
Dynamic Donor Limit – Cycle through Donors (DLC) approach. If there are more donors 
than recipients, the donor limit is one, and donors are selected without replacement. If 



there are more recipients than donors, DLC will minimize the number of donors that are 

used ቒ
	௥

	ௗ
ቓ times by systematically selecting each donor once at each donor selection cycle. 

 
3. Analysis  

3.1 Simulation Design 
 
In this section, we describe the simulation design we used to evaluate the effects of 
varying donor limits on statistics of interest over repeated samples. For the simulation, 
we used two populations that were modeled from historic 2012 Economic Census data in 
two industries. These data sets contain two total variables: total annual payroll 
(PAYROLL) and total receipts (RCPTOT). Additionally, there are five detail variables 
(Detail1 – Detail5) that sum to RCPTOT, i.e., ܴܱܶܶܲܥ ൌ 	∑ ݅ܽݐ݁ܦ ௝݈

ହ
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j represents the amount of the total receipts in the specified category, and an 
establishment may report values in any combination of details, as long as the additivity 
constraint is satisfied. Thus, zero is a legitimate value for any detail item. This historic 
data used for modeling contains many more detail items. However, many of the requested 
detail items are rarely reported. For modeling, each detail item was ranked within 
industry by percentage of industry total receipts and numbered accordingly:  Detail1 
contains the highest percentage of total industry receipts, Detail2 contains the second 
highest percentage, etc. , That said, the majority of the total receipts in an industry are 
reported by one to four detail items. To facilitate modeling, the value for the remaining 
detail items was consolidated into a single “balance of details” item denoted Detail5. 
Consequently, the distribution of Detail5 is the combination of many different 
distributions and is very difficult to model or impute.  
 
For our analysis, we start with the simplest scenario, by not incorporating sampling into 
our simulations. Instead, we induce nonresponse into each population and our samples 
are effectively the respondent observations from a “census.” We randomly induced 
nonresponse 1000 times using PAYROLL as an auxiliary variable for modeling a 
covariate dependent response mechanism. This violates the missing at random 
assumption for hot deck discussed in Section 2. However, it is more realistic for a 
business program, where larger units are more likely to respond (Thompson and Oliver 
2012). 
 
Following Andridge and Thompson (2015), we induce nonresponse via the logistic 
regression model 
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with H= 1 indicating item nonresponse for either total receipts (RCPTOT) or all detail 
variables (Detail1 – Detail5), and Z indicating PAYROLL. This generates simulated data 
with the ignorable covariate dependent response mechanism. We set ߛ଴ = 
log(݌ ሺ1 െ ⁄,ሻሻ݌  where p is the targeted response rate and the regression parameter is 
estimated from the population data. We conducted the analysis for three different overall 
response rates: 40, 60, and 80-percent.  
 
After independently inducing nonresponse, we implement hot deck imputation. Each 
industry contains two imputation cells (larger and smaller establishments). Performing 
hot deck for a single variable is straightforward: match donor to recipient, and then 



substitute the donor’s value in the missing recipient’s record. The procedure for detail 
variables is a little trickier because of the additivity constraint. To preserve the 
multivariate relationship (multinomial distribution) of details, the donor record’s 
distribution of details is applied to the recipient record as  
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where  j indexes the five different details. This requires a valid RCPTOT value for all 
units but ensures the additivity requirement.   
 
 
3.2 Evaluation Criteria 
 
In this section, we present our evaluation criteria. Primarily, the Census Bureau products 
are tabulations. Consequently, minimizing the bias is very important, and macro-analysis 
is preferred. However, many programs publish frequency distributions of non-zero 
(positive) detail values (establishment counts by detail). Consequently, realistic imputed 
micro-data are very useful.  
 
3.2.1 Macro-Data Evaluation Criteria 
 
To assess the accuracy of the totals produced by each of the different donor limit schemes 
we looked at absolute relative bias. Let ݔ௜ be the population total for item i and ݔො௦௜௠௣ be 
the estimated total for the completed simulated nonresponse data set s, donor limit m, and 
response rate p. We define the absolute relative bias as: 
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To assess the precision we used Mean Squared Error (MSE) of the estimates produced by 
each of the different donor limiting hot deck imputation implementations: 
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3.2.2 Micro-Data Evaluation Criteria 
 
To evaluate the quality of the micro-data, we conducted two different types of analysis. 
To assess the fit of the imputed distributions of details compared to the true population 
distributions, we implemented the Kolmogorov-Smirnov goodness-of-fit tests (K-S Test). 
To compare the establishment counts between the imputed and true populations, we 
conducted chi-squared goodness-of-fit tests. For each of the j details where j=1…5, we 
conduct chi-squared goodness-of-fit tests for each donor limit m and each response rate, 
p. Let ௝݁ be the proportion of establishments that reported a nonzero value for detail j in 
the population  ݁̂௝

௦௠௣  be the estimated proportion of  establishments that reported a 
nonzero value from the completed simulated nonresponse data set s where s=1…1000, 
the goodness-of-fit test hypothesis is: 
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All tests are conducted at the 10% significance level. Recall that with goodness-of-fit 
tests, the objective is to fail to reject the null hypothesis. 
 

4. Simulation Results 
4.1 Macro-Data Analysis 
 
Recall, for our macro-data analysis we looked at both absolute relative bias and MSE of 
the total estimates for each of the considered donor limit schemes. For reference, we also 
looked at these statistics when solely employing the backup method to impute for all 
recipients. Figure 1 presents the absolute relative bias for each of the detail items from 
one of the two considered populations. The conclusions from the two populations were 
the same; graphs for the second population are available on demand. When looking at the 
40-percent response rate (more recipients than donors), DL1 has a much smaller absolute 
relative bias than the other studied donor limits. However, recall from Section 2 that the 
available backup method for this simulation study is likely to yield more precise 
estimates than the hot deck. In general, the backup method is usually much worse than 
the implemented method and is a last resort. Thus, the low-response rate results shown 
below for DL1 may be overly optimistic, especially given the comparable results between 
the considered hot deck variations when the response rates increase. 

 
Figure 1: Absolute Relative Bias of Details in One Population 

Figure 2 presents the MSE results, which are very similar to the absolute relative bias 
results. For the 40-percent response rate, the MSE of solely using the backup method was 
much lower when compared with the hot deck methods. However, the same cautions 



apply in the interpretation, as there is no additional imputation variance when the backup 
method is applied, which in turn leads to a reduced estimate of variance. 
 
 

 
Figure 2: Mean Squared Error of Details in One Population 

 
In Figure 3 we present the absolute relative bias and MSE values for RCPTOT for each 
of the three considered response rates. Unlike the detail variable results, we see the DL1 
absolute relative bias and MSE values are very close to those values observed for all of 
the other donor limit schemes, even with the low response rate of 40-percent. This is 
because the backup method for RCPTOT performed similarly to the hot deck methods. 
These results when considered with the previous results in Figures 1 and 2, demonstrate 
the way that DL1 is influenced by the properties of the backup method.   



 
Figure 3: Absolute Relative Bias and MSE for RCPTOT in One Population 

All of the considered donor limit schemes result in totals with comparable statistical 
properties with the exception of DL1. When there are more recipients than donors DL1 
can be heavily influenced for better or worse by the backup method.   
 
4.2 Micro-Data Analysis 
 
One of the appealing features of hot deck imputation is that it provides the user with 
realistic micro-data. In this section, we present the results of goodness-of-fit tests that 
assess the properties of the micro-data. We first present the results of the Kolmogorov-
Smirnov tests where the null hypothesis is that the empirical distribution of the hot deck 
completed data set is the same as the empirical distribution of the population. Rejecting 
the null hypothesis indicates that the empirical distributions are not the same. We 
performed the K-S tests for each of the hot deck completed data sets for each considered 
response rate. Figure 4 presents the proportion of K-S tests out of 1000 where we reject 
the null hypothesis for each donor limit scheme. When the response rate is 40-percent, 
then at most two-thirds of the recipients will be imputed via hot deck with the DL1 
approach, with the remaining one third imputed via the backup method. Consequently, 
there are two separate imputed empirical distributions, which when combined may not 
resemble the empirical distribution of the population. In our application, the two imputed 
empirical distributions are clearly dissimilar, as demonstrated by the consistent rejection 
of the goodness-of-fit tests. In contrast, the empirical distributions obtained using the 
remaining donor limits look very similar, and the goodness-of-fit tests are rejected less 
than 15-percent of the time. This indicates that hot deck limits that do not rely on the 
backup method as frequently as DL1 tend to give fairly realistic micro-data distributions 
within a population. When the response increases to 60-percent, all donor limit schemes 



rarely reject the null hypothesis and there is really no notable difference between them. 
When the response rate is 80-percent the null hypothesis was not rejected at all for any of 
the considered donor limits and no graph is presented in Figure 4. Looking at the graph 
for RCPTOT, we see very similar patterns to what we observed with the detail items.     
 

 
Figure 4: K-S Test Percent of Rejected Goodness-of-Fit Tests 

Besides values, counts are often of interest, specifically the number of establishments that 
reported (nonzero) receipts for each detail item [note: these tests are not meaningful for 
total receipts in our context given that a value is assigned to every establishment]. To 
assess the resulting Detail1- Detail5 establishment counts for each considered donor limit, 
we look at chi-squared goodness-of-fit tests as described in Section 3.2. As with the K-S 
Tests, rejecting the null hypothesis indicates that the estimated establishment counts are 
not statistically the same as the population counts. Figure 5 presents the proportion of 
chi-squared goodness-of-fit tests out of 1000 where we reject the null hypothesis for each 
donor limit scheme. For all of the details, except for Detail1, when the response rate is 40-
percent, we reject the null hypothesis most of the time for DL1. For Detail1 the null 
hypothesis is rejected less than 20-percent of the time. We observe this difference among 
the details, because the proportion of units that reported legitimate zero values for each 
detail varies within the population. For Detail1, a zero value was reported by less than 
three-percent of the establishments (out of more than 900 establishments). Detail2 – 
Detail5, however, have a higher percentage of legitimate zeroes reported. The backup 
method does not impute a zero-value instead imputing a small value for every recipient. 
Consequently, the use of the backup method for Detail1 does not impact the establishment 
counts as much as it does for Detail2 – Detail5. Looking at the other donor limits when the 
response rate is 40-percent, we note that the dynamic donor limits (DLC and DLD) 
appear to yield the best fits. As the response rate increases, the dynamic donor limits 



continue to perform most consistently. Note that the differences in results with the 80-
percent response rates are slightly exaggerated due to scale: the null hypothesis is 
rejected less than 3-percent of the time in all scenarios. 
 

 
Figure 5: Chi-Squared Test Percent of Rejected Goodness-of-Fit Tests 

 
5. Conclusion 

 
Research is often conducted under somewhat “ideal” conditions. In the case of hot deck 
imputation research, often there are a large number of donors that greatly exceeds the 
number of recipients and the donors are a random subsample. In our applications, this 
situation rarely occurs especially when a large number of details are collected. In this 
context, the choice of donor limit is no longer “frivolous” as suggested in Joenssen 
and Bankhofer (2012). Using unrestricted donor limits with random hot deck will 
increase the imputation variance (Kalton and Kish 1981); using a donor limit of one 
creates hybrid-imputed distributions within the same imputation cell. Neither seems 
optimal. 
 
Moreover, for DL1 as the response rate moves from 50-percent towards zero, the backup 
imputation choice becomes more influential. This is true also for other donor limit 
schemes where the limit is an arbitrary constant. With DL1 and a low donor-to-recipient 
ratio (i.e., less than 0.5), the backup method becomes the primary method. In this case, 
the feasibility and statistical properties of the backup method model must be evaluated. In 
general, one would not use a hot deck method if a viable and reliable backup method 
existed, unless micro-data distributions were of primary concern.  
 



On the other hand, allowing the donors to be used more than once – even at the cost of 
increased variability – could eliminate the need for a backup method. However, increased 
variability may not be acceptable by survey practitioners. The dynamic limits we 
investigated seem to be a feasible compromise between the two extremes of donor limits 
we considered. Furthermore, when considering statistical properties of the micro-data 
(highly skewed) regardless of the donor-recipient ratio there seems to be an indication 
that either of the dynamic donor limits considered will generally result in more realistic 
micro-data when compared with the other studied donor limits. When considering the 
establishment counts and the chi-squared goodness-of-fit tests, the dynamic limits 
resulted in consistent results across response rates. 
 
For the statistician implementing random hot deck imputation, especially where there are 
many imputation cells with varying response rates and/or an unreliable or non-existent 
backup method, the dynamic limits presented here are a good option. Both dynamic 
limits perform similarly, provide a reasonable compromise of the two extremes DL1 and 
DLN, and result in precise establishment count estimates consistently across response 
rates. Furthermore, using either of the dynamic limits sidesteps the debate over what the 
arbitrary donor limit should be. 
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