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Abstract
Surveys usually suffer from non-response, which decreases the effective sample size. Item non-

response is typically handled by means of some form of random imputation if we wish to preserve
the distribution of the imputed variable. This leads to an increased variability due to the imputation
variance, and several approaches have been proposed for reducing this variability. Balanced im-
putation consists in selecting donors or residuals at random at the imputation stage, in such a way
that the imputation variance is eliminated or at least significantly reduced. In this work, we propose
an implementation of balanced random imputation which enables to fully eliminate the imputation
variance for some parameters. Following the approach in Cardot et al. (2013), we consider a reg-
ularized imputed estimator of a total and of a distribution function and we prove their mean square
consistency. Some simulation results support our findings.

Key Words: balanced imputation, cube method, distribution function, imputation mechanism,
imputation model, mean-square consistency, regularized estimator

1. Introduction

Surveys usually suffer from non-response, which decreases the effective sample size. Item
non-response is typically handled by means of some form of imputation, which consists in
replacing missing values with artificial values in order to reduce the bias and possibly con-
trol the variance due to non-response. Imputation methods may be classified into two broad
classes: deterministic and random. Unlike random imputation methods, if the imputation
process is repeated, deterministic methods yield a fixed imputed value given the sample.
Some form of random imputation is typically used if we wish to preserve the distribution
of the imputed variable, but leads to estimators with increased variability due to the impu-
tation variance. In some cases, the contribution of the imputation variance is appreciable
resulting in potentially inefficient estimators.

In the literature, three general approaches for reducing the imputation variance have been
considered. The fractional imputation approach consists of replacing each missing value
with M ≥ 2 imputed values selected randomly, and assigning a weight to each imputed
value (Kalton and Kish, 1981, 1984; Fay, 1996; Kim and Fuller, 2004; Fuller and Kim,
2005). It can be shown that the imputation variance decreases as M increases. The second
approach consists of first imputing the missing values using a standard random imputation
method, and then adjusting the imputed values in such a way that the imputation variance
is eliminated; see Chen et al. (2000). The third approach that we study consists of select-
ing donors or residuals at random in such a way that the imputation variance is eliminated
(Kalton and Kish, 1981, 1984; Deville, 2006; Chauvet et al., 2011; Hasler and Tillé, 2014).

In this work, we propose an implementation of balanced random imputation which enables
to fully eliminate the imputation variance for the estimation of a total. Also, we propose
regularized imputed estimators of a total and of the distribution function, following the
approach in Cardot et al. (2013), and we establish their mean square consistency. The
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paper is organized as follows. Our notations in case of full response are defined in Section
2. The imputation model is presented in Section 3, along with the imputed estimators of the
total and of the distribution function. The regularized estimator of the model parameter is
also introduced. In Section 4, we describe the proposed exact balanced random imputation
method, and we prove the mean square consistency of the imputed estimator of the total
and of the imputed estimator of the distribution function. The results of a simulation study
are presented in Section 5. We draw some conclusions in Section 6. The proofs are given
in Chauvet and Do Paco (2016).

2. Finite population framework

We consider a finite population U of size N with some variable of interest y. We are
interested in estimating some finite population parameter such as the total ty =

∑
k∈U yk

or the population distribution function

FN (t) = N−1
∑
k∈U

1(yk ≤ t) (1)

with 1(·) the indicator function.

In order to study the asymptotic properties of the sampling designs and estimators that we
treat below, we consider the asymptotic framework of Isaki and Fuller (1982). We assume
that the population U belongs to a nested sequence {Ut} of finite populations with increas-
ing sizes Nt, and that the population vector of values yUt = (y1t, . . . , yNt)

> belongs to
a sequence {yUt} of Nt-vectors. For simplicity, the index t will be suppressed in what
follows and all limiting processes will be taken as t→∞.

A random sample S is selected in U by means of some fixed-size sampling design p(·).
The probability for unit k to be included in the sample is denoted as πk, and is assumed to
be non-negative. In a situation of full response, a design-unbiased estimator for ty is the
Horvitz-Thompson estimator

t̂yπ =
∑
k∈S

dkyk (2)

with dk = π−1k the sampling weight, and an approximately unbiased estimator for FN (t) is

F̂N (t) =
1

N̂

∑
k∈S

dk1(yk ≤ t) with N̂ =
∑
k∈S

dk. (3)

Proposition 1. We have

Ep
[
(t̂yπ − ty)2

]
≤

(
sup
k 6=l∈U

n

∣∣∣∣1− πkl
πkπl

∣∣∣∣
)∑
k∈U

πk

(
yk
πk
− ty
n

)2

, (4)

Ep

[
{F̂N (t)− FN (t)}2

]
≤

(
4

N2

)(
sup
k 6=l∈U

n

∣∣∣∣1− πkl
πkπl

∣∣∣∣
)∑
k∈U

1

πk
, (5)

with Ep(·) the expectation with respect to the sampling design p(·).



3. Imputed estimators

In a situation of item non-response, the variable y is observed for a subsample of units
only. We note rk for a response indicator for unit k, and pk for the response probability
of unit k. We note nr the number of responding units, and nm the number of missing
units. We assume that the units respond independently. In case of simple imputation, an
artificial value y∗k is used to replace the missing yk and leads to the imputed version of the
HT-estimator

t̂yI =
∑
k∈S

dkrkyk +
∑
k∈S

dk(1− rk)y∗k, (6)

and to the imputed version of the estimated distribution function

F̂I(t) =
1

N̂

{∑
k∈S

dkrk1(yk ≤ t) +
∑
k∈S

dk(1− rk)1(y∗k ≤ t)

}
. (7)

Many imputation methods used in practice can be motivated by the general model

m : yk = z>k β + σv
1/2
k εk, (8)

where zk is aK-vector of auxiliary variables available at the imputation stage for all k ∈ S,
β is aK-vector of unknown parameters, σ is an unknown parameter and vk is a known con-
stant. The εk are assumed to be independent and identically distributed random variables
with mean 0 and variance 1, and with a common distribution function denoted as Fε(·).
The model (8) is often called an imputation model (e.g., Särndal, 1992).

In this paper, inference will be made with respect to the joint distribution induced by the im-
putation model, the sampling design and the non-response mechanism, which is known as
the Imputation Model approach (IM). An explicit modeling of the non-response mechanism
is not needed, unlike the Non-response Model approach (see Haziza, 2009), but the data
are assumed to be missing at random as defined by Rubin (1976). We assume that the sam-
pling design is non-informative (Särndal et al, 1992, p. 33; Pfeffermann, 2009), namely
that the vector of sample membership indicators IU ≡ (I1, . . . , IN )> is independent on
εU ≡ (ε1, . . . , εN )>, conditionally on a set of design variables xU ≡ (x1, . . . , xN )>. Also,
we assume that the non-response mechanism is unconfounded (Deville and Särndal, 1994;
Rubin, 1983), namely that the vector of response indicators rU ≡ (r1, . . . , rN )> is inde-
pendent on εU , conditionally on the set of auxiliary variables zU ≡ (z1, . . . , zN )>.

Mimicking the imputation model, the imputed value is

y∗k = z>k B̂ + σ̂v
1/2
k ε∗k, (9)

with B̂ and σ̂ some estimators of β and σ. Using ε∗k = 0 in (9), we obtain deterministic
regression imputation which leads to an approximately unbiased estimation for the total ty
but not for the distribution function FN (·). Therefore, we focus in the rest of the paper on
random regression imputation, where the imputed values in (9) are obtained by selecting
the random residuals ε∗k from the set of observed residuals

Er = {el; rl = 1} where el =
yl − z>l B̂
σ̂v

1/2
l

. (10)



The residual el is attributed to the non-respondent k with the probability

Pr(ε∗k = el) = ω̃l where ω̃l =
ωk∑
l∈S ωlrl

, (11)

where ωl is an imputation weight attached to unit l. We assume that these imputation
weights do not depend on εU , IU or rU . Alternatively, the residuals ε∗k could be generated
from a given parametric distribution.

A possible estimator for the unknown parameter β is

B̂r = Ĝ−1r

(
1

N

∑
k∈S

rkωkv
−1
k zkyk

)
with Ĝr =

1

N

∑
k∈S

rkωkv
−1
k zkz

>
k . (12)

Since a matrix Ĝr close to singularity can lead to unstable estimators, we follow the ap-
proach proposed in Cardot et al. (2013) and we introduce a regularized version of B̂r. We
first write

Ĝr =

p∑
j=1

ηjrujru
>
jr, (13)

where η1r ≥ . . . ≥ ηpr are the non-negative eigenvalues of Ĝr, with u1r, . . . , upr the
corresponding orthonormal eigenvectors. For a given a > 0, the regularized version of Ĝr
as defined in Cardot et al. (2013) is then

Ĝar =

p∑
j=1

max(ηjr, a)ujru
>
jr, (14)

which is an invertible matrix with

‖Ĝ−1ar ‖ ≤ a−1, (15)

where ‖ · ‖ stands for the spectral norm. This leads to the regularized estimator of the
parameter β

B̂ar = Ĝ−1ar

(
1

N

∑
k∈S

rkωkv
−1
k zkyk

)
. (16)

In the rest of the paper, we use this regularized estimator in (9) to generate the imputed
values, and in (10) to define the observed residuals.

In order to study the asymptotic properties of the estimators that we treat below, we consider
the following regularity assumptions:

H1: There exists some constant C1, C2 > 0 such that C1 ≤ Nn−1πk ≤ C2 for any
k ∈ U .

H2: There exists some constant C3 such that supk 6=l∈U

(
n
∣∣∣1− πkl

πkπl

∣∣∣) ≤ C3.

H3: There exists some constant C4 > 0 such that C4 ≤ mink∈U pk.

H4: There exists some constants C5, C6 > 0 such that C5 ≤ N−1nωk ≤ C6 for any
k ∈ U .



H5: There exists some constants C7, C8 > 0 such that C7 ≤ vk ≤ C8 for any k ∈ U .
There exists some constant C9 such that ‖zk‖ ≤ C9 for any k ∈ U . Also, the matrix

G =
1

N

∑
k∈U

πkpkωkv
−1
k zkz

>
k (17)

is invertible, and the constant a chosen is such that ‖G−1‖ ≤ a−1.

The assumptions (H1) and (H2) are classical in survey sampling. It is assumed in (H3) that
the response probabilities are bounded below from zero. It is assumed in (H4) that no ex-
treme imputation weight dominates the others. The assumption (H5) is in particular related
to the choice of the regularizing parameter a; similar assumptions are also considered in
Cardot et al. (2013).

Proposition 2. Assume that the imputation model (8) holds, and that assumptions (H1)-
(H5) hold. Then:

E
{
‖B̂ar − β‖2

}
= O(n−1). (18)

4. Balanced random imputation

Performing random regression imputation amounts to select the random residuals ε∗k with
replacement from the set of observed residualsEr. As pointed out by Chauvet et al. (2011),
this may be performed by selecting a without-replacement sample S∗ from a population U∗

of nm × nr cells, where selecting the cell (k, l) means that the donor l is attributed to the
non-respondent k, i.e. ε∗k = ẽl. So as to respect exactly the drawing probabilities in (11),
each cell (k, l) ∈ U∗ is given the probability of selection ψkl = ω̃l. So as to select one
donor exactly for each non-respondent, we can proceed by stratifying the population U∗ by
rows, and by using a one unit per stratum stratified design for the selection of S∗.

One drawback of random regression imputation lies in an additional variability called the
imputation variance. The imputed estimator of the total may be written as

t̂yI =
∑
k∈S

dkrkyk +
∑
k∈S

dk(1− rk)(z>k B̂ar) + σ̂
∑
k∈S

dk(1− rk)(v
1/2
k ε∗k), (19)

and the imputation variance is due to the third term on the right-hand side only. This
imputation variance is completely eliminated if the random residuals are selected so that

∑
k∈S

dk(1− rk)v
1/2
k ε∗k = EI

{∑
k∈S

dk(1− rk)v
1/2
k ε∗k

}
=

∑
k∈S

dk(1− rk)v
1/2
k ēr with ēr =

∑
j∈S

ω̃jrjej . (20)

The sampling design used for the selection of S∗ may be chosen so that equation (20)
holds, at least approximately (see Kalton and Kish, 1981, 1984; Deville, 2006; Chauvet et
al., 2011). It may be shown that equation (20) is equivalent to the first balancing equation

∑
(k,l)∈U∗

x0kl
ψkl

I∗kl =
∑

(k,l)∈U∗

x0kl, (21)



with x0kl = dkv
1/2
k ψklel for the cell (k, l), and with IU∗ = (I∗11, . . . , I

∗
nmnr

)> the vector
of sample membership indicators in S∗. Also, selecting exactly one donor for each non-
respondent is equivalent to the second set of balancing equations∑

(k,l)∈U∗

xkl
ψkl

I∗kl =
∑

(k,l)∈U∗

xkl, (22)

with x = (x1, . . . , xi, . . . , xnm)> and xikl = ψkl1(k = i) for the cell (k, l). Therefore,
Chauvet et al. (2011) proposed to select a sample S∗ balanced on variables x̃> = (x0, x>)
by means of the cube method (Deville and Tillé, 2004). Other constraints may be added for
the selection of S∗ if it is desired to eliminate the imputation variance for other parameters.

The cube method for balanced random imputation proposed by Chauvet et al. (2011) pro-
ceeds in two steps: a flight phase, at the end of which an exact balancing is maintained,
and a landing phase in which the balancing equations are partly relaxed until the com-
plete sample S∗ is obtained. The flight phase (Deville and TillÃ c©, 2004; Chauvet and
Tillé, 2006; Tillé, 2006) proceeds through a random walk from the vector of probabili-
ties ψU∗ = (ψ11, . . . , ψnmnr)> to a random vector ψ∗U∗ = (ψ∗11, . . . , ψ

∗
nmnr

)> such that
ψ∗kl = 0 is the cell (k, l) is definitely rejected, ψ∗kl = 1 is the cell (k, l) is definitely selected,
and 0 < ψ∗kl < 1 if the decision for (k, l) remains pending at the end of the flight phase.
The balancing equations are perfectly respected at the end of the flight phase, in the sense
that ∑

(k,l)∈U∗

x̃kl
ψkl

ψ∗kl =
∑

(k,l)∈U∗

x̃kl. (23)

The landing phase enables to end the sampling, either by successively relaxing the balanc-
ing equations or by means of an enumerative algorithm on the remaining units. At the end
of the landing phase, the final vector of sample selection indicators IU∗ is obtained. The
random residual for unit k ∈ Sm is then

ε∗∗k =
∑
l∈Sr

I∗klel. (24)

With this balanced random imputation procedure, the set of balancing equations (22) is
exactly respected. As a result, for any unit k ∈ Sm one unit l exactly in Sr is such that
I∗kl = 1. Denoting by l(k) this unit, we can therefore rewrite (24) as

ε∗∗k = el(k). (25)

The missing residual is therefore replaced with an observed estimated residual. A drawback
of this balanced imputation procedure is that, due to the landing phase, the imputation
variance is not completely eliminated. At the end of the landing phase, we have∑

(k,l)∈U∗

x̃kl
ψkl

I∗kl '
∑

(k,l)∈U∗

x̃kl. (26)

Therefore, the balancing equation (21) is only approximately respected and the imputation
variance is not completely eliminated. Our proposal is to follow the same approach, but
to use the result of the flight phase only for the matter of imputation. That is, the random
residuals are obtained as

ε∗k =
∑
l∈Sr

ψ∗klel. (27)



From equation (23), this choice enables to fulfill equation (20) exactly. The imputed esti-
mator of the total is therefore exactly the same as under deterministic regression imputation,
and the imputation variance is completely eliminated. It is shown in Proposition 3 below
that the imputed estimator of the total is mean-square consistent for the true total.

Proposition 3. Assume that the imputation model (8) holds, and that assumptions (H1)-
(H5) hold. Then:

E[
{
N−1(t̂yI − ty)

}2
] = O(n−1). (28)

A drawback of the proposed method is that a missing residual is not necessarily replaced
by an observed estimated residual, but may be replaced with a weighted mean of observed
estimated residuals. However, it can be shown that with the proposed balanced random
imputation procedure, ε∗k is an observed residual for at least nm−1 units. Even if the vector
x̃ includes additional balancing constraints, e.g. if it is desired to eliminate the imputation
variance for other parameters, then the number of units such that 0 < ψ∗kl < 1 at the end
of the flight phase is bounded (Hasler and Tillé, 2014). Therefore, a missing residual εk
is replaced with an observed estimated residual, for all units in Sm but perhaps a bounded
number of units which are replaced with weighted means of observed residuals. We prove
in Proposition 4 below that the imputed distribution function under the proposed exact
balanced imputation procedure is mean-square consistent for the population distribution
function.

Proposition 4. We assume that assumptions (H1)-(H5) hold. Also, assume that σ̂ is a
consistent estimator of σ, and that Fε is absolutely continuous. Then:

E
∣∣∣F̂I(t)− FN (t)

∣∣∣ = o(1). (29)

5. Simulation study

We conducted a simulation study to test the performance of several imputation methods
in terms of relative bias and relative efficiency. We first generated 2 finite populations of
size N = 10, 000, each containing one study variable y and one auxiliary variable z. In
each population, the variable z was first generated from a Gamma distribution with shape
and scale parameters equal to 2 and 5, respectively. Then, given the z-values, the y-values
were generated according to the model yk = β zk + z

1/2
k ηk. The parameter β was set to 1

and the ηi were generated according to a normal distribution with mean 0 and variance σ2,
whose value was chosen to lead to a coefficient of determination (R2) approximately equal
to 0.36 for population 1 and 0.64 for population 2.

We were interested in estimating two parameters: the population total of the y-values, ty
and the finite population distribution function, FN (t) for t = tα, where tα is the α-th popu-
lation quantile. We considered α = 0.25 and 0.50 in the simulation. From each population,
we selected 1, 000 samples of size n = 100 by means of rejective sampling also called con-
ditional Poisson sampling (e.g., Hajek, 1964) with inclusion probabilities, πk, proportional
to zk. That is, we have πk = nzk/tz, where tz =

∑
k∈U zk. Then, in each generated

sample, nonresponse was generated according to an uniform nonresponse mechanism with
a probability of response p0. We considered p0 = 0.5 and 0.75 in the simulation. In each
sample containing respondents and nonrespondents, imputation was performed according
to three methods: deterministic ratio imputation, random ratio imputation and exact bal-
anced ratio imputation. All three methods are motivated by the imputation model (8) with
zk scalar and vk = zk. For deterministic ratio imputation (DRI), the imputed values are



Table 1: Monte Carlo percent relative bias of the imputed estimator and relative efficiency
DRI RRI EBRI DRI RRI EBRI

p0 = 0.5 p0 = 0.75

Population 1 RB 0.47 0.50 0.47 0.30 0.33 0.30
RE 0.79 1 0.79 0.79 1 0.79

Population 2 RB 0.17 0.26 0.17 0.16 0.25 0.16
RE 0.79 1 0.79 0.79 1 0.79

given by (9) with ε∗k = 0 for all k. The imputed values for random ratio imputation (RRI)
are given by (9), where the residuals ε∗k are selected independently and with replacement,
while the imputed values for exact balanced ratio imputation (EBRI) are given by (9) where
the residuals ε∗k are selected so that the balancing constraint (21) is exactly satisfied.

Then, we computed the imputed estimator of ty given by (6), and the imputed estimator of
FN (t) given by (7). As a measure of the bias of an estimator θ̂I of a parameter θ, we used
the Monte Carlo percent relative bias

RB(θ̂I) =
EMC(θ̂I)− θ

θ
× 100, (30)

where EMC(θ̂I) =
∑1000

r=1 θ̂
(r)
I /1000, and θ̂(r)I denotes the estimator θ̂I in the r-th sample,

r = 1, . . . , 1000. As a measure of variability of θ̂I , we used the Monte Carlo mean square
error

MSE(θ̂I) =
1

1000

1000∑
r=1

(θ̂
(r)
I − θ)

2. (31)

Let θ̂(DRI)I , θ̂(RRI)I , and θ̂(EBRI)I denote the estimator θ̂I under deterministic ratio impu-
tation, random ratio imputation and exact balanced ratio imputation, respectively. In order
to compare the relative efficiency of the imputed estimators, using θ̂(RRI)I as the reference,
we used

RE =
MSE(θ̂

(.)
I )

MSE(θ̂
(RRI)
I )

. (32)

Monte Carlo measures for F̂I(t) were obtained from (30)-(32) by replacing θ̂I with F̂I(t)
and θN with FN (t).

Table 1 shows the values of relative bias and relative efficiency corresponding to the im-
puted estimator t̂yI . It is clear from Table 1 that t̂yI was approximately unbiased in all the
scenarios, as expected. In terms of relative efficiency, results showed that DRI and EBRI
lead to the smallest mean square error for the estimation of a total. This result is not surpris-
ing since the imputation variance is identically equal to zero for both imputation methods.

We now turn to the distribution function, FN (t). Table 2 shows the relative bias and relative
efficiency corresponding to the imputed estimator F̂I(t). As expected, the estimators under
deterministic ratio imputation were considerably biased, with absolute relative bias ranging
from 2.7% to 41.3%. In terms of relative bias, both RRI and EBRI showed almost no
bias, except for t0.25 in the case of balanced imputation. These results can be explained
by the fact that both imputation methods succeeded in preserving the distribution of the
study variable y. Also, we note that the imputed estimator F̂I(t) under exact balanced



Table 2: Monte Carlo percent relative bias of the imputed estimator of the distribution
function and relative efficiency

DRI RRI EBRI DRI RRI EBRI
α p0 = 0.5 p0 = 0.75

Population 1 0.25 RB -41.3 -1.6 -2.7 -31.3 -1.1 -2.0
RE 2.03 1 0.94 1.66 1 0.94

0.50 RB -4.7 -1.3 -0.9 -3.6 -0.7 -0.6
RE 1.22 1 0.98 1.13 1 0.97

Population 2 0.25 RB -26.7 -0.7 -1.4 -22.2 -0.5 -1.1
RE 1.45 1 0.93 1.34 1 0.94

0.50 RB -2. 7 -0.3 -0.1 -2.1 -0.1 0.1
RE 1.09 1 0.97 1.07 1 0.97

ratio imputation was more efficient than the corresponding estimator under random ratio
imputation in all the scenarios with a value of relative efficiency varying from 0.93 to 0.98.

6. Final remarks

In this paper, we considered estimation under item non-response. We proposed an ex-
act balanced random imputation procedure, where the imputation variance is completely
eliminated for the estimation of a total. We also proved that the proposed imputation pro-
cedure leads to mean-square consistent estimators for a total and for a distribution function.

We have not considered the problem of variance estimation in the context of the proposed
balanced random imputation. Variance estimation for the imputed estimator of the total is
fairly straightforward, since the imputed estimator is identical to that under deterministic
regression imputation. Variance estimation for the imputed distribution function is cur-
rently under investigation.

When studying relationships between study variables, Shao and Wang (2002) proposed a
joint random regression imputation procedure which succeeds in preserving the relation-
ship between these variables, and a balanced version of their procedure was proposed by
Chauvet and Haziza (2012). Extending the exact balanced random procedure to this situa-
tion is a matter for further research.
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