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Abstract

This paper investigates ways to treat an influential
observation in the estimation of total sales from the
Monthly Retail Trade Survey. An observation is
considered influential if the estimate of total monthly
sales is dominated by its weighted contribution.
Influential observations occur infrequently but are
problematic when they do appear.  To be clear, the
assumption is that the influential observation is true
although unusual, and not the result of a reporting or
recording error.  The paper examines several
methodologies for treating influential values with the
goal of finding those that use the observation but in a
manner that assures its contribution does not have an
excessive effect on the total.  Two of the methods appear
effective with monthly data but will need further
investigation.

Keywords: Winsorization, M-estimation, reverse
calibration
 

1.  Introduction

This paper investigates methods of identifying and
treating influential observations in the estimation of total
sales from the U.S. Monthly Retail Trade Survey
(MRTS).  An observation is considered influential if its
weighted contribution has an excessive effect on the
estimate of total monthly sales (Chambers et al. 2000).
Influential observations occur infrequently but are
problematic when they do appear.  To be clear, this
study assumes that the influential observation is correct
although unusual, and not the result of a reporting or
recording error.   The goal is to find methodology that
improves the estimate of total sales and uses the
observation in a manner that assures its contribution
does not have an excessive effect. 

Black (2001) describes the current corrective procedures
employed in the MRTS when sample units can have a
large and possibly erroneous effect on estimates. The
methods include weight adjustments and moving a unit
to a different industry when the nature of the business
changes.  The MRTS processing already includes

running the Hidiroglou-Berthelot algorithm (1986) each
month to identify outliers and create the imputation base
(Hunt, Johnson, and King 1999).  The Hidiroglou-
Berthelot algorithm designates observations that should
be reviewed and sometimes suppressed from the
imputation base.  The intent is for the treatment of
influential values that is developed to complement, not
replace, the Hidiroglou-Berthelot algorithm.  With the
Hidiroglou-Berthelot algorithm detecting and
compensating for reporting errors, the expectation is that
the appearance of influential values will be fairly rare.

Basically two approaches are available for the treatment
of influential observations in estimation: (1)  trimming
the weight, sometimes called constraining the weight,
and (2) modifying the value of the influential
observation so that it has less impact on the estimate of
the total.  If the business is expected to continue to
report influential values, then possibly it could be
considered as belonging to another sampling stratum and
a change in the weight may be the better option.  If the
influential value appears to be a rare occurrence for the
business, then adjusting the value is more desirable.

The basic strategy is to identify candidate methodologies
and use actual data for a month that contained an
influential value to identify the methodologies that
demonstrate promise for subsequent research.  The
evaluation criteria include the number of influential
observations that are detected, including the number of
true and false detections made.  In addition, the
evaluation will include an estimate of bias and an
assessment of the impact on measures of change, in
particular the month-to-month ratio of sales.

The study examined weight trimming and methods that
modified the influential observation.  The weight
trimming approach made the arbitrary choice of cutting
the weight to one-third of what it was originally.  The
methods examined for modifying the outlying
observation were as follows:
(1)  Winsorization (Chambers et al 2000)

(1a) specifying a cut-off value by stratum
(Kokic and Bell 1994)
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(1b) specifying an individual cut-off value for
each observation (Clarke 1995)

(2)  Reverse calibration (Chambers and Ren 2004)
(3) Generalized M-estimation (Beaumont and Alavi

2004, Beaumont 2004).

This paper describes the candidate methods and the
results of a study of one month’s observations for a
particular industry where an influential value is present.

2. Weight trimming

For the i-th business in a survey sample of size n, Yi is its
sales for the month of observation; wi is its sample
weight, and Xi is a variable highly correlated with Yi
such as previous month’s sales or its monthly sales from
a pre-entry questionnaire.  Total monthly sales is
estimated by

$Y w Yi i
i

n

=
=
∑

1

An observation Yi is considered influential if the
contribution of wiYi dominates the estimated total $Y
(Chambers et al. 2000).   

A method of weight trimming that seems appropriate for
influential observations is truncating the weights of the
influential observations and adjusting the weights of the
other observations, the inliers, to account for the
remainder of the truncated weights so that the new
weights have the same sum as the original set of weights
(Potter 1988).  Other methods of trimming weights such
as those found in Stokes (1990) and Cohen and Spencer
(1991) appear more suited to addressing the problems of
extreme weights than of influential observations.

The procedure we describe below assumes that the sum
of the weights needs to remain the same. If the sum of
the weights does not have to be the same every month,
as would be the case if only rates were estimated, then
the weights of the inliers would not have to be adjusted.

Assume that s is the sample of size n with weights wi ,
and s1 is the subset of inliers and s2 is the subset of
influential observations.  For each influential
observation i in s2, define a truncated weight ci.  Then
define a trimmed set of weights as follows:
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The estimator of the total is then
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An equivalent approach only changes the weight for the
influential observations but multiplies the final total by
A as follows: 

w
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The estimator of the total is then calculated as follows:

$Y A w YT
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The calculation of A probably should be done within
sampling stratum.  

The choice of ci also could be investigated.  We
considered only the option setting ci = wi/3, which was
arbitrary.

3.  Modifying the observation

We consider two methods that modify the influential
observations, winsorization and reverse calibration.  We
also consider M-estimation, which can modify either the
weight or the value of the influential observation.

3.1 Winsorization

Winsorization may be one-sided or two-sided.  The
initial focus is on one-sided winsorization which adjusts
influential values deemed to be too large.  One-sided
winsorization methodology sets a pre-defined rule for
adjusting an outlying (positive) value Yi downwards,
leaving remaining values unchanged (Searls 1966).
There are two types of winsorization to consider
(Chambers, Kokic, Smith, and Cruddas 2000).  Both
require setting a cut-off value K and defining an
alternative value of Yi.  The basic Type 1 and Type 2
estimators are
Type 1

Y
K Y K
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For both Type 1 and Type 2, the estimator of the total is

$ *Y w YW i
i

n
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1
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Type 2 has the appealing feature of using all the data,
but not weighting Yi - K, the portion deemed extreme. 

The investigation considered two methods for defining
K.  One method defines one value of K across all the
strata.  Other methods define a separate Kh by stratum or
by observation.   The investigation includes two ways of
defining K described by Chambers et al. (2000) in a
discussion of the Type 2 estimator from the prediction
theory perspective:
(1)  defining a separate Kh for each stratum (Kokic and
Bell 1994) that minimizes mean squared error
(2) defining a separate Ki for each observation (Clarke
1995) that minimizes mean squared error.   

For a stratified estimator, Kokic and Bell (1994)
developed a separate Kh for each stratum h under a
model assuming that for each stratum h, the Yhi within
the stratum h were independently and identically
distributed such that E(Yhi) = μh and var(Yhi) = σh

2 .  

Kokic and Bell (1994) showed that the overall mean
squared error was minimized under the model by
choosing a separate Kh for each stratum defined by 

K N n L yh h h h= − +−( / )1 1

where  L > 0 is a constant chosen so that the bias of the
stratified winsorized estimator is -L.   An estimator of L
is shown below.

An interesting generalization by Clarke (1995) defines
a separate Ki for each observation and also uses L.   The
approach assumes a more general model where the Yi
can be characterized as independent realizations of
random variables such that E(Yi) = μi and var(Yi) = σi

2.

The winsorized estimator of the total is written as

$ *Y w Zi
i

n

i=
=
∑

1

where Zi = min{Yi, Ki + (Yi - Ki)/wi}.

Clarke suggests approximating the Ki that minimizes the
mean squared error under the more general model by
Ki = μi + L(wi- 1)-1 , which requires estimating  μi and L.

For an estimate of μi, Chambers et al (2000) suggest
using the results of a robust regression.  Then the
estimate of μi is bXi where b is the regression coefficient.

To estimate L, the Clarke method has several steps.
First use the estimate of μi to estimate weighted residuals
Di = (Yi - μi )(wi -1) by .$ ( )( )D Y bX wi i i i= − − 1

Next arrange the estimates of the residuals in decreasing
order $ , $ , ..... $ .( ) ( ) ( )D D D n1 2

Then find the last value of k, called k*, such that 

( ) $ $
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j
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=
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is positive.  Finally, estimate L by 

$ ( ) $*
( )
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j

k
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=
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1

For reference and context, the investigation also
examines defining K as the sample mean plus two
standard deviations.

3.2 Reverse Calibration

The reverse calibration approach (Ren and Chambers
2003, Chambers and Ren 2004) has two steps:
1)  use a robust estimation method to estimate the total
2)  then modify the influential observations to achieve
that total.

Chambers and Ren consider the population U to be
divided into two subsets U1 containing inliers, the
‘clean’ part of the population that does not have any
influential values, and U2 which contains the influential
observations.  Likewise, sample s is divided into two
subsets s1 containing inliers, the ‘clean’ part of the data
set that does not have any influential observations, and
s2 which contains the influential observations.

The outlier resistant estimation procedure rescales all the
population in a manner that permits unbiased estimation
and minimizes variance.   The rescaled observations are
defined by 

Y
f Y Y U
Y Y Ui
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The method finds an optimal value of λ and f( λ ) so that
the population total (not the sample total) remains
unchanged:

Y Y f Y Yi
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i
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i
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For the equality to hold, f(λ) = 1+δ(1-λ) where
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∈ ∈
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Minimization of the variance subject to  f(λ) = 1+δ(1-λ)
leads to the optimum value  .  See Chambers andλopt

Ren (2004) for details.

The outlier resistant estimator of the total is then

$ ( $ ) $**Y f w Y w Yopt i i
i s

opt i i
i s

= +
∈ ∈
∑ ∑λ λ

1 2

To define the adjustment for the influential observations,
Chambers and Ren first define the contribution that the
outliers make to the estimate of the total by 

$ $ **t Y w Yi
i s
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∑

Then Chambers and Ren have two options to consider
for corrections to the influential observations in s2 so
that estimated total remains the same.  Option 1 is really
a ratio adjustment.  

Option 1

Y
Y

t

w Y
i s

Y i s
i

i
j j

j s

i

**( )

$
,

,

1

2
2

1

2
=

∈

∈

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

∈
∑

Option 2

Y
Y w

t w Y

w Y
i s

Y i s

i
i i

j j
j s

j
j s

i

j

**( )

$

,

,

2

2

2 2

1

1 2

2

=
+

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∈

∈

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

∈

∈

∑

∑

The estimator of the total from the sample for option j =
1 and j = 2 is
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3.4 Weighted M-Estimation

Robust statistics are useful for studying influential
observations because they relax the assumption in
parametric statistics of a strict parametric model.  They
are designed to be insensitive to some departures from
the model assumptions (Hampel et al. 1986).   In
contrast, nonparametric statistics relax the underlying
assumption in a different way by assuming continuity
and symmetry instead of a parametric model.  M-
estimators (Huber 1964) are robust estimators that come
from a generalization of maximum likelihood estimation.
 

Next is a brief overview of the underlying principles of
M-estimation.  The maximum likelihood estimator is
defined as the value Tn = Tn(X1, ..., Xn ) of the parameter θ
that maximizes the joint distribution of the observations
X1, ..., Xn of a random variable X with a density
function  as follows:fθ

.f XT
i

n

in
=
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1
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This is equivalent to minimizing 

 where ln denotes the natural[ ln( ( )]−
=
∑ f XT
i

n
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logarithm.

M-estimation generalizes this by replacing -ln with a
function  and defining Tn to be the value thatρ
minimizes the sum :

.
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The function  has a derivation  such that the value Tnρ ψ
that minimizes the sum also satisfies
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The application of M-estimation examined in this
investigation is regression estimation.  The weighted
M-estimation technique proposed by Beaumont and
Alavi (2004)  is able to adjust the weights or the values
of the influential observations.  The approach for
adjusting the values uses a compromise between the
generalized regression estimator and the best linear
unbiased estimator of the population total (Beaumont
and Alavi 2004, Beaumont 2004).  SAS macros have
been made available by Jean-Francois Beaumont. 

Briefly, the method estimates which is implicitly$B M

defined by
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x
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Q is a constant that is specified.   The variable wi is the
survey weight, which may or may not be the inverse of
the probability of selection.  The variable hi is a weight
that may or may not be a function of xi.
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The function  may have a two-sided or one-sided form.ψ
An example of a one-sided form, called the Type II
Huber function, is

ψ
ϕ

ϕ
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where  is a positive tuning constant.  This form isϕ

equivalent to a winzorization of .r Bi
M( $ )

Solving for requires the Iteratively Reweighted$B M

Least-Squares algorithm in many circumstances.  For
certain choices of the weights and variables, the solution
is the standard least-squares regression estimator.

The specification of the function  leads to threeψ
choices for adjusting the survey weights.  The Type II
Huber function weight adjustment, which is the default
in Beaumont’s program, for the above isψ
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For an adjustment to the influential value, Beaumont and
Alavi (2004) use a weighted average of the robust
prediction and the observed value yi of the formx Bi

M$

y a y a x B
where
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Beaumont (2004) finds an optimal value of the tuning
constant  by deriving and then minimizing a design-ϕ
based estimator of the mean-square error that does not
require a model to hold for all the data as in the methods
of Kokic and Bell (1994) or Clarke (1995).  It does not
require a model to hold for the influential value, in
particular.  Beaumont uses a numerical analysis
algorithm to solve for the optimal value of the tuning
constant  .ϕ

Under particular choices of the variables and weights,
Beaumont’s method reduces to the Clarke method
(1995) and the Kokic and Bell method (1994) discussed
earlier in this paper.

The adjustment that corresponds to the Type II Huber
function is

y
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Whether adjusting the influential observation or its
weight, we obtained approximately equal weighted
estimates of total sales when we calibrated the weights
to maintain their sum.
 

4.  Results

Tables 1 and 2 show the results of applying the methods
to data from the MRTS for a particular industry that had
an influential value in a particular month.   Also
included is a definition of a Winsorization K as the mean
plus twice the standard error using unweighted and
weighted data for reference.

For the M-estimation, the method finds the optimalϕ
but calls for an initial value that we set equal to 2.  We
used the one-sided Type II Huber function  shown inψ
Section 2.4.  Also, we used the program default ,Q = 1

and set for all units in sample.  This implies thatv xi i=

h w x

r w y x B
i i i

i i i i
M

= −

= − −

( )

( )( $ )

1

1

Notice that now has the same form as in the Clarkeri
$Di

method, called “Winsor by obs” in the tables.  However,
the b in the Clarke method and  in the M-estimation$B M

method usually will not be equal because they use
different estimation methods.

Weight trimming appeared to produce a reasonable
estimate of total sales, but the choice of the trimming
factor c = 0.3333 was arbitrary.  Weight trimming also
requires an adjustment of the weights of the other
observations in the stratum. In a large ongoing survey,
changing other values often has disadvantages.  Another
disadvantage is that another method is needed to identify
the influential values since weight trimming only makes
an adjustment after an influential value is identified.
 
The method of defining the K by stratum (Kokic and
Bell 1994) identified 51 influential observations, which
are too many to be considered effective with our data.

The Clarke winsorization of defining a separate K for
each observation identified exactly one influential value
and seemed to produce a reasonable estimate of total
sales.  The resulting month-to-month change for the total
was to the observed month-to-month change than M-
estimation that adjusts the observation or M-estimation
that adjusts the weight.
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The winsorization that defined K as the mean plus twice
the standard error with unweighted data identified no
influential values so it was not effective in this case.
However, when the same definition for K used weighted
data, the method  identified four influential values.  The
three additional values are not extreme enough to be
considered influential. The resulting month-to-month
change for the total was further from the observed
month-to-month change than M-estimation by
observation, M-estimation by weight, or winsorization
for each observation.

Reverse calibration did not provide an adjustment for the
influential value.  Evidently the situation is too extreme
for it to be effective.

M-estimation identified one influential value.  The
method that adjusts the influential value produced the
month-to-month change closest to the observed month-
to-month change for the total.  The method that adjusts
the weight for the influential value  produced the same
month-to-month change as the method that changed the
value of the influential observation.

5.  Summary

These results illustrate our  investigations of these
methods with data from other month and other industries
in the MRTS.  Winsorization by each observation, M-
estimation by observation, and M-estimation by weight
appear to have the most promise.  M-estimation has the
feature of being able to be deployed as a two-sided
method that raises weighted low influential values as
well as lowering weighted high influential values.  The
winsorization by each observation only applies to
weighted high influential observations.   

Subsequent research focuses on these three methods and
expands to other industries and views the effect of
adjustments on a continuing basis.  In addition,
consideration of whether the methods are able to handle
situations where more than one influential value is
present work.  Some of the results are contained in a
paper by Mulry and Feldpausch (2007).
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Table 1.  Results for total and month-to-month
change for different treatments of influential values

Method

Total

(billions)

Month-
to-
month
percent
change

Number of
Influential
Units
Identified

previous
month 42.4
current
month 38.6 -0.090
weight trim 38.3 -0.097     1*
Winsor by
stratum 37.6 -0.113 51
Winsor by
obs 38.5 -0.092   1
Winsor
μ + 2s 38.6 -0.090   0
Winsor
wgt μ + 2s 38.2 -0.099   4
Reverse
Calibration 38.7 -0.087     1*
M-est obs 38.4 -0.094   1
M-est wgt 38.4 -0.094   1

*Method does not detect influential units, one influential
unit was specified

Table 2.  Results for different treatments for the
influential value of sales 

Value

(millions) Weight

Weighted
Value

(millions)
previous
month 0.57 55   31
current
month 7.50 55 413
weight trim1 7.50 18 135
Winsor by
obs 4.00 55 220
Winsor
wgt 2μ + 2s 1.60 55 87
M-est obs 4.30 55 234
M-est wgt 7.50 30 225

1 Weight trimming adjusts the other 18 weights in the
stratum by a factor of 1.020.
2Winsor wgt  identified three other values.μ + 2s
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