
COMBINING DATA SOURCES IN ESTIMA TlON 

S. E. Ahmed and Bashirullah, University of Regina 
S. E. Ahmed, Department or Mathematics and Statistics, Regina, Saskatchewan, S4S OA2 CANADA 

KEY WORDS: uncertain prior information, bias 
and quadratic risk, shrinkage preliminary test esti­
malor and size of the test. 

ABSTRACT 

The problem of simultaneous estimation of a set 
of normal means is considered. The properties of 
the proposed estimator are assessed. It is demon­
strated analytically and numerically that the pro­
posed shrinkage preliminary test estimator provides 
a wider range than the usual preliminary test esti­
mator in which it dominates the classical estimator. 
An optimal rule for the size of the preliminary test 
is presented. It is found that the size of the prelim­
inary test for the proposed shrinkage preliminary 
test estimator is reasonable. 

1. INTRODUCTION 

In this paper we discuss various estimation tech­
niques to determine whether or not to combine two 
or more data sources on the basis of preliminary 
tests of significance and shrinkage principle. It is 
advantageous to utilize all the data sources in the 
estimation procedure under some assumptions. But 
in some experimental situations, it is not certain 
whether or not these assumptions hold. This un­
certain prior information (U PI) , in form of t he hy­
pothesis, in the estimation procedure can be used 
in estimation process. It is natural to perform a 
preliminary test on the validity of the UP I in the 
form of the parametric constraints, and then choose 
between the restricted and unrestricted estimation 
procedure depending upon the outcome of the pre­
liminary test (Bancroft, 1944) . The preliminary 
test estimators are widely used by researchers, as 
is evident from the extensive bibliographies of Ban­
croft and Han(1977) and Han et al. (1988). For a 
nice account of the parametric theory of the prelim­
inary test estimation in the finite sample space, we 
refer to Ahmed (1992a), Ahmed and Saleh (1990) 
and Judge and Bock (1978) , among others. Asymp­
totic theory of these estimators have been studied 
by Ahmed (1991, 1992b), Kulperger and Ahmed 
(1992) and Gupta et al. (1989). 

In this article, our aim is to focus on the small 
sample properties ( under quadratic loss) of the es­
timators based on preliminary test estimators and 
to compare these with usual estimators . 
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Let Yil, Yi2, ... , Yin; are independent observa­
tions from normal distributions with finite variance 
(72 and mean Oi, i = 1, 2, ... , k I and respective sam­
ple sizes nl,·· · ,nk . 

We are interested in simultaneous estimation of 
the mean parameter (J = (01 ,,,, 0.),. To esti­
mate 8, one need only to consider the sufficient 
statistic T;(y) = L7';'1 Y;j. The unrestricted es­
timator (UE) of 0 IS defined componentwise by 
iJ = 7i(y)/ni , i = l , 2,··· k. Moreover , it is sus­
pected that the mean 0; are presumably equal , but 
with some degree of uncertainty. We are primarily 
interested in the estimation of 8 when 

Ho : 01 = O2 = ... = O. = 00 (unknown). (1.1) 

The restricted estimator (RE) of (J is defined com-
- R • 

ponentwise by (J = L;;I T;(y)/n, where n = 
· R 

nl + n2 + ... + n.. (J of (J performs better than 
iJ when Ho in (1.1) holds but as the hypothesis er-

· R 
ror grows, 8 may be considerably biased , ineffi-
cient and inconsistent , while the performance of iJ 
remains constant over such departures. In order 

- R 
to overcome this shortcoming of the 8 , it is of-
ten desirable to develop an estimator which is a 

- · R 
compromise between 8 and 8 by incorporating a 
preliminary test (PT) on the null hypothesis H 0 in 

(1.1). It is important to remark here that iJP is a 
function of 0') the size of the preliminary test . It is 
recommended in the literature to use a level of sig­
nificance of at least 0.15 for such preliminary test­
ing. Use of such a large significance level helps to 

maximize the minimum efficiency of iJP . Thus, the 
- P 

use of (J may be limited due to the large size of the 
preliminary test . In this paper , a shrinkage tech­
nique will therefore be introduced into the prelimi­
nary test estimation to overcome this difficulty. The 
proposed methodology remarkably improves upon 

- P 
the (J with respect to the size of the preliminary 

· sp 
tes t (Ahmed, 1992a). Interestingly, (J dominates 
• - P 
(J over a wider range than (J . More importantly 

ASP , 
the proposed (J provides much more meaningful 

size for the preliminary test than iJP 



2. IMPROVED ESTIMATION 

The preliminary test estimator (PE)o f 0 denoted 

by il = (Or,· . . on is given by 

~ p ~ R -
o = 0 I (Dn < c(o») + OI(Dn ~ C(o»). (2.1) 

where I (A ) is an indicator fun ction of the set A , 
and Dn is a test statistic for testing the preliminary 
hypothesis and C(o) be the upper 100,,% (0 < " < 
1) point of D .. 

- - R - - R 
D _ (0-0 )'A(O - O ) (2.2) 

n - k"S' 

• n 

, 1 ""'" - , A = diag(n;), S = m L.. L..(Vij - 0;) , 
i=l j=l 

where k" = k - 1 and moon - k . 
Under the null hypothesis the test stat istic Dn 

follows the F-distribution with (k" , m) degrees of 
freedom . Thus, for a given level of significance 
a(O < a < I), C(o) = F'" .m(a), where Fv •. v,(") 
is the upper 0: level critical value of a central F­
distribution with (V I , v, ) degrees of freedom . The 

properties of il is reported by Ali (1 990). In the 
present investigation we propose an improved ver-

- p 
sion of 0 by employing a shrinkage technique in 
the estimation process. 

2. 1. Impro ving on th e. rcs tricted estimator 

When Ho holds in (1.1), then it is reasonable to 
- - R 

shrink 0 towards 0 (Thompson , 1968). Thus , a 
shrinkage restricted est imator (SRE) of 0 is defined 
by 

- S R - R -o = ,,0 + (1 - ,,)0, " E [0 , IJ (2.3) 

where 'iT is a coeffi cient reAecting degree of confi­
dence in the prior information . However 1 the value 
of " may be completely determined by the experi­
menter on the basis of his/ her belief in the UP I . If 
the experimenter strongly believes that H 0 is t rue 
t hen 7r = 1 should be used . On the other hand , 

- SR - -
if 7r = 0 then 0 = O. Thus , 0 is a specia l case 

-SR - R -SR 
of 0 . However, like 0 , 0 yields a smaller 
quadratic risk at and near the null hypothesis at 
the expense of poorer performance in the rest of 
the parameter space. It is important to note that 

AS R A 

the 0 dominates 0 over a large portion of the pa­
· R 

rameter range which is wider than that of 0 . This 
- R -SR 

motivates replacing 0 by 0 in the usual P E 
given in (2. 1) . Therefore, we propose the shrinkage 

preliminary test estimator (S PE), which is a con-
- SR -

vex combination of (} and (} and defined in the 
following sub-section . 

2.2. Improving on preliminary test estimator 

The shrinkage preliminary test estimator (SPE) 
- sp o of 0 is defined below as : 
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~SP ASR _ 
o = 0 I(Dn < C(o») + OI(Dn ~ C(o»)' (2.4) 

In this case if the null hypothesis is tenable then 
- S R -
8 is used , while 8 is a sensible choice other-
wise. However, both (2. 1) and (2.4) involve the 
test statist ic Do which adjusts the estimator for 
any empirical departure from the null hypothesis. 
~or large values of Dn both (2.1) and (2.4) yield 
8 , while for small values of Dn their behavior is 
different . Furthermore, if we substitute 7r = 1 in 
(2.4) then it is the usual preliminary test estimator 
given in (2.1). Our main objective is to study the 
finite sample theory of the proposed estimator. Si­
multaneous analytical and computational compar­
ison of the proposed estimators is presented . The 
relative performances of the estimators to the unre­
stricted estimator are discovered. It is important to 

- sp 
note tha t the sampling properties of 0 depend on 
among other factors, the size chosen for the prelimi­
nary test . A max-min rule for the choice of the level 
of significance for the prelim inary test is discussed . 

- 0 

Let 0 be an estimator of 0 and r be a positive 
sem i-defini te (p.s.d .) matrix , then the qu adratic 
loss function is 

c(i/ ,O) = (00 

- 8) ' r(Oo - 0) . (2.5) 

3. MAIN RESULTS 

In this section , the expressions for the bias , mean 
squared error matrix and risks of the estimators are 
provided. First , the joint density of estimators is 
obtained in the followin g theorem. 

Theor em 3.1: If we define, 

Xn = (0 - 0) , 
- - SR 

Zn = (0 - 0 ), (3. 1) 

then 

7r.EH' )} 
7r 2EH' I 

(3.2) 
< 2 -1 JA , 
v = He , .E oo" A , H = Ik - - , J = 1. 1 .. 

n 

We note that 0 is an unbiased estimator of O. Fur­
ther, by virtue of (2 .3) , (2.4) and Theorem 3.1 we 
have 

- . SR • 
0 - 0 = " HO , 



- S P 
(8 - 8) = X n - "Znl(Dn S C(o)). (3.3) 

~ SR ~ SP 
The bias of t he 8 and 8 are derived in the 
following theorem: 

~S R ASP 
Theorem 3.2: Bias of the 8 and 8 are 
given below in (3.4)-(3.5) respectively. 

- S R 
B, = £(8 - 8) = -,,6 (3.4) 

B, = £(iJ
sp 

- 8) = -".sH. " m (C(o); A) , (3.5) 

where A = 6' E-'Ii , VI = k + 1 and H.".,('; A) 
is the cumulative distribution function of a noo­
central F distribution with (VI , v,) degrees of free­
dom and noncentrality parameter D... Furthermore, 

." c(o) = v,F." ,m(O'), and F.".,(O') is the upper 0' 

level critical value of a central F-distribution with 
(V" .,) degrees of freedom . We conclude that the 

-SR 
bias of 8 is unbounded in 6 which goes to 00 if 
II 6 II tends to 00. On the other hand , the bias vec­

- s p 
tor of 8 is bounded in b . Hence, the expression 

- P 
for bias of 8 (" = 1), 

B3 = £(iJ
P 

- 8) = -liIf."m (c(o); A) , (3 .6) 

The absolute value of each element in vector B 2 is 
less than the corresponding element in vector B 3 . 

ASP - p 
Thus, the proposed estimator 8 is superior to 8 
from the point of view of the absolute bias depend­
ing on the value of 11'" . 

- SR ASP 
Finally, the risk of IJ and IJ are presented in 

the following theorem . 
- SR ASP 

Theorem 3.3: Risk of IJ and 8 under the 
loss function defin ed in (2.5) are given below by 
(3.7)-(3.8) respectively : 

!R( iJSR ;IJ) = !R(iJ;IJ) - "."tr(rL) + ,,' Ar, (3.7) 

!R(iJ; IJ) = tr(r E) , ,,- = ,,(2 - ,,), Ar = Ii'rli 

AS P -
!R(IJ ; IJ) = !R(IJ; IJ ) - tr(rL ),,- If."m(c(.); A)+ 

Ar{2" If . " m(C(o); A) - ,,- If ."m(C(o); A)}, (3.8) 

where v, = V, + 2, and c(o) = ~: F." ,m(O') ' The 
risk analysis of the estimators is presented in the 
following section. 

4. RISK ANALYSIS 

First, we recall that iJ is an unbiased est imator of 
IJ with a constant risk tr(r E) in the entire pa­

- S R 
rameter space, while the risk for 8 is a linear 
line function of 6r with slope 1r2 and intercept 
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- SR 
tr(r E ) - "-tr(rL ). The risk function of IJ and 
iJ intersect at Ar = tr(rL ),,-',," . However, it is 
evident from equation (3.7) that for Ar close to 0, 
~ S R ~ 

IJ performs better than 8 . But as Ar moves away 
- SR 

from the origin , the risk of 8 grows and becomes 
unbounded while the risk of iJ remains constant. 
Hence , the departure from t he null hypothesis is 

-SR 
exceedingly important to 8 but is of least con-
cern to 8. Further, 

whenever Ar S ,,-',,-tr(rL). 

Hence, eSR 
has smaller risk than iJ in the interval 

[0 , ,,-',,-tr(rL)) . Clearly, when Ar moves away 
from the null hypothesis beyond ".-',,- t r( rL) , the 

- SR 
risk of8 grows without a bound . Now, analyzing 

~ SP ~ 

the risk of IJ relative to IJ and noticing that 

tr(rL),,- H., m(C(o); A) 
A < ' 

r - {2"If., .m(c(0); A) - ,," H."m(c(o ); A)} 

First, we note th at Ifq,m(c(o ); A) is decreasing func­
tion of q and A. For fixed y, 

In particular, we have 

JIq+l ,m (c(o); A) < Ifq ,m (C(o );A) S Ifq ,m (c(o); O) , 

for every q ~ 3, 0' E (0, 1) and A > O. Also, 

for every q ~ 3, 0' E (0, 1) and A > O. Making 
use of these results in (3.8), we examine the prop-

~ SP ~ SP 
eries of IJ . For 6 = 0 the risk of IJ reduces to 
l tr(r E) - ,,- If."m(c(o); O)tr(rL)} which is sub-

stantially smaller than the risk of iJ . The risk re­
duction depends on the value of 0' and Jr . Not only 
that, for large deviations of Ii from O(A ~ 00) , i.e., 

departing from the null hypothesis, the risk of iJ
sp 

approaches to the risk of iJ from the above. Sim­
ilar results hold when k ~ 00. In addition , as 6 

- sp 
moves away from 0 , the value of the risk of IJ 
increases to a maximum after crossing the risk of 8, 
then decreases towards it. 



-SR ~ SP 

In order to compare 9 with 9 ,from (3.7) 
,SR 

-(3.8) we observe that near the null hypothesis 9 
,SP 

performs better than 9 , furth er 

R(i/SR; 9) < 1 

R(i/SP; 9) -
if 

""{1- H., m(C(' ); ~)}tr(rL) 
~ < ' a 

r - ".' _ {2"'H."m(cia); ~) - ""H."m(c(a); ~)}· 
Thus in light of the above discussion , none of the 

~ ~ SR _SP 
estimators €I, 8 and 8 is inadmissible with re-
speet to the other. 

For some numerical work let us consider a special 
choice of r = E - ' in the loss function and then the 
remaining discussion follows. In this case, .6. r = 
/j' E-'/j and hence ~r = ~. Further, tr(r E) = k 
and tr(rL) = k' . Then 

-SR - SP 
R(9 ; 9) :5 R(9 ; 9) if ~ :5 ".-'".' k' , 

while 
- SP . 

R(9 ; 9) :5 R(9; 9) if 

~ :5 k'".' H."m( cia ); ~) 

{2"'H."m(cia);~) -

". ' H."m( c(a);~)}-1 

, P 
The risk of 9 can be easily deduce from (3 .8) as : 

, P , 
R(9 ; 9) =R(9; 9) - k' H."m(cia); ~) + 

~{2H."m(cia) ; ~) - H."m(c(a) ; ~)}. 
(4.1 ) 

, P , 
It is worth pointing out that R(9 ; 9) :5 R(9; 9) if 

~ :5 k' H."m(cia); ~) 

{2H."m(cia); ~) - H."m (c(a); ~)}-1 
, SP 

Thus 9 provides data analyst a larger portion 
in the parameter space in which it dominates iJ 

, P 
than t hat of 9 . As an example, if '" ~ 0, then 
- sp -SR - SP -
9 ~ 9 and hence 9 , pdominates 9 in the in, 
terval [0 , k'".-'".') while 9 performs better than 
i/ in the interval [0, k') . 

- SP -p 
Finally, we compare the risk of the 9 and 9 

,SP 
and eX'!:'Pine the conditions under which 9 ,splom­
i,~tes 9 . Consider the risk difference of 9 and 
8 : 

ASP - P 2 
R(9 ;8)-R(8 ;8) = k'(I-".) H ... m(cia);~)-~ 

{2(1- 1f)H."m(cia);~) - (1- "')'H."m(c(a); ~)}. 
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It is obvious from the above expression that risk 
- p ASP 

of 9 will be smaller than the risk of 9 in the 
neighborhood of the null hypothesis. However, the 
risk improvement may not be substantial for the 
larger values of".. More significantly, for large val-

ASP _p 
ues of .6. , 8 dominates 8 in the remaining part 
of the parameter space, and 

R(i/sP; 9) < 1 if 
, P -

R(8 ; 9) 

~ > (I - ". )k' H." m(cia); ~) 

- 2H."m(cia); ~) - (1- "')H.,(c(a); ~) 
, SP 

Let ~. be the point at which R(8 ; 8) and 
, P 

R(9 ;8) intersect for each ". , then for ~ E [O,~.) , 
- P ASP ASP 
9 dominates 8 , while for ~ E [~. , 00), 9 

- P - s p - p 
dominates 8 . However, both 8 and 8 share a 
common property that as .6. - 00 their risk con­
verges to the common lim it, i.e., to the risk of 8 

,SR 
while the risk of 9 is unbounded i,:.At 

Generally, when ~ is close to 0, 8 performs 
- ASP 

better than both 8 and 8 . However, when ~ 
moves away from the null hypothesis, the risk of 
, SR 
8 , increases and become unbounde.ds)'Shile the risk 
of 8 is independent of ~ and risk of 8 is bounded 
in~ . Hence, departure from the null hypothesis 

- SR AS P - SR 
is fatal to 8 . Thus, 8 has an edge over 8 
with respect to the risk . We conclude that none 

- - SR - P ASP 
of the four estimators 8, 8 ,IJ and 8 of 8 is 
inadmissible with respect to anyone of the other 
three. 

Under the null hypothesis in (1.1), t he risks of 
- SR - - P ASP 
8 , 8, 8 and 8 may be ordered according to 
the magnitude of the risks in the following theorem. 
Theor em 4 ,1: Under the null hypothesis domi­
nance picture of the estimators is : 

- SR - P ASP -
IJ >-9 >-8 >-8, for a range of 7r , 

where >- denotes domination. 
Proof: Consider risk difference under the null hy­
pothesis 

R(i/; 8) _R(i/SP; 8) = k'".' H."m(cia) ; 0) 
- SP -p 2 

R(8 ;8)-R(8 ;8) = k'(I-".) H."m(cia); O) 

R(i/P; 8) _R(i/SR; 8) = k' {"., - H." m(c(a); O)} , 

the risk difference is positive in all above cases 
and the last relation holds whenever ". > 1-

)1- H." m(cia); 0) . -



As we observed that jJ5P is function of nand 11". 

One method to determine 0' and 11'" is to employ an 
optimal rule given by Ahmed (1992a) among others 
which is discussed in the following section. 

5. RISK EFFICIENCY ANALYSIS 

The relative efficiency of the two estimators of 8 
defined by 

~ . - 0 - 0 ~_ 

E(8 : 8 ) = iR(8 ; fJ)jiR(fJ ; 8). 

- . - 0 
Bear in mind that the value of E( fJ : 8 ) greater _ _ - 0 

than 1 signifies improvement of () over () . The 
purpose of calculating the relative efficiency is two 
fold; one is to see the performance of estimators 
and the other is to determine the significance levels 
of the preliminary tests. Usually the investigator 
wishes to use an estimator with the efficiency larger 

· sp 
than unity. The relative efficiency of fJ compared 
to iJ is given by 

. · sp I 
E(a,.:'>,,,.) = iR(fJ; fJ)/'R(fJ ; 8) = 1 + h(.:'» , 

where 

For a given nand k, efficiency is a function of 
a, .60, 11'" and the maximum of the function occurs 
at .:'> = 0 with value 

Emax = {1- k-1k'".' Hv, .m(c(a); On- 1(> 1). 
(52) 

Noting that for fixed values of a and"., E( a, .:'> , , 1T) 
decreases as il increases from 0, crossing the line 
E(a, il" if) = 1, attains a minimum value at a 
point .60 0 and then increases asymptotically to 1. 
However, for fixed 11'" , Emo% is a decreasing function 
of a while the minimum efficiency (Emin) is an in­
creasing function of a. Alternatively, for any fixed 
0', the maximum value of efficiency is a decreas­
ing function of 7r and the minimum efficiency is an 
increasing function of 1\'". The shrinkage factor 11'" 

may also be viewed as a variation controlling factor 
among the maximum and minimum efficiencies. 

In an effort to help the user in choosing an esti· 
mator with maximum relative efficiency, we adopt 

. SR 
the following procedure. If.:'> ::; k'".-2".', then fJ 

·SR 
may be used because the behavior of () is superior 
in this range as compared to the other estimators 
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discussed here. Generally, ~ and I are unknown , 
there is no way of choosing a uniformly best esti­
mator. 

In order to determine the size of the preliminary 
test we need to pre-determine a value of the mini­
mum efficiency (Emin) that we are going to accept. 
Consider the set 

W = {a, 1TJE(a,,,.,.:'»::>: Em'n, It.:'>}. 

Thus, the estimator is chosen which maximizes 
E(a , ,,. , .:'» over all a,'" E Wand.:'>. Thus, we 
solve for 0'. and 71"0 such that 

sup {infE(a,,,.,.:'»} = E(a',1To,.:'» = Em'n' 
a,1rEW ~ 

(5.3) 
For given 1f we determine the value of n such that 

sup {infE(a ,1T,.:'»} = E(a',1T,.:'» = Em'n. 
aEW ~ 

Tables have been prepared for the val ues of E mo%, 

E min along with ~min, the value of .60 at which 
minimum occurs, for various values of k and 7r = 
0.2(0.2)1.0. However, the tables are not appended 
here due to page limit and may be obtained from 
the first authour. 

It is observed that when 1f increases Emo% in­
creases and Emin decreases. Hence, there does not 
exist a 1T o satisfying (5.3). The value of ". can be 
determined by the researcher according to his prior 
belief in the null hypothesis. However, we recom­
mend the following two steps for selecting the size 
of the preliminary test: 
1. Suppose the experimenter does not know the 
size of the test but believes that if = 71"0 and wishes 
to accept an estimator with at least efficiency Emin . 
Then the max-min principle determines a = a­
such that 

E(a-, 11'"0' .60) = Emin . 

Therefore, a user who wishes to find a reasonable 
~ - SR 

alternative to the fJ or fJ then should be able to 
specify Emin. 

As an example, if the investigator suspects that 
11'" = 0.6 and is looking for an estimator with a min­
imum efficiency of at least 0.73, then from Table 3, 
a' is 0.10. Such a choice of a' would yield an esti­
mator with a maximum efficiency of 1.89 at ~ = 0 
with a minimum guaranteed efficiency 0[- 0.73 at 
.:'>m'n = 7.60. Alternatively, if the user wishes to 

, P 
rely on data completely and uses 8 , then from 
one of the Tables the size of the preliminary test 
will be approximately 0.20 and the maximum effi-

. p 
ciency drops from 1.89 to 1.75. Thus, the use of 8 



may be limited by the large size of ", the level of 
- sp -sp 

significance, as compared to 8 Hence, (J has 
- p 

a remarkable edge over (J with respect to the size 
of the preliminary test . 

2. Suppose the experimenter does not know the 
-sp 

value of 0' and 7r and wants to use 8 which has ef-
ficiency at least Emin . Then, among the set of esti­
mators with" E W, where W = {,,: E(",,,/ , t.):::: 
Emi." 'r/ 6. and 7r}, the estimator is chosen to maxi­
mize the efficiency over all a: E Wand all 6., 7r. In 
short, we use the following equation for 0': 

sup {infE(",7r,t.)} = E(,,·,7r,t.) = Emin,V 7r. 
aEW .6. 

The solution 0'''' is the optimum level of significance. 
Tables may be used again for finding ,,'. For ex­
ample, suppose 7r E TI, where 

II = {7r: 7r = 0.2(0.2)1.0}, 

and the experimenter does not know the value of 
7r but is willing to use an estimator with efficiency 
at least Emin. Then a = 0'''' can be located from 
the tables using the above method. As a result, the 
user can attain efficiency larger than 1. 

4. CONCLUSIONS AND OUTLOOK 

We conclude this article with the following remarks. 
-sp 

The proposed estimator IJ dominates the usual 
- p 

preliminary test estimator 8 in a larger portion of 
the parameter space. Besides it provides more ap­
propriate size for the preliminary test. More signifi­

cantly, iJ
sp 

gives a wider range in which it performs 
- - p 

better than IJ as compared to IJ . 
- sp 

The distribution theory of IJ and risk of all the 
estimators studied in this paper rests on the multi­
normality of the unrestricted and the restricted 
maximum likelihood estimators as well as on the 
non central F -distribution of test statistic. 
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UNBIASED ESTIMATION IN THE PRESENCE OF FRAME DUPLICATION 

Orrin Musser, National Agricultural Statistics Service, USDA 
Research Division, Room 305, 3251 Old Lee Hwy, Fairfax, VA 22030 

INTRODUCTION 

Survey organizations which conduct surveys on an 
ongoing basis devote much effort and ex pense to the 
maintenance of their sampling frame. Estimation of 
population parameters may suffer from two main types 
of frame deficiency: incomplete population coverage 
and duplication. In this paper we will focus on the 
problem of duplication, with emphasis on the 
computation of correct inc lusion probabilities as a 
means to achieve unbiased estimation. 

Duplication in the sampling frame is a serious 
problem which undermines the assumption o f known 
inclusion probabilities for each population element. For 
a large sampling frame, while it may be too costly to 
determine all duplication in the frame, it may be 
reasonable to assume that for a given population 
element it may be possible to determine all duplicates 
in the frame. If so, then for many sampling designs, 
unbiased estimation is possible. 

A sampling frame is a device which associates a 
collection or list of sampling units with a finite 
population of elements. It is helpful to formally 
describe the relationship between the sampling frame 
and the population. Suppose we have a population U = 
{E1, E2, ••• ,Ek, ... ,EN}, a collection of N elements Ek and 
a sampling frame F = {F" F" ... ,F;, ... ,FM}, a 
collection of M sampling units Fl' For each unit Fi and 
each element Ek• let the indicator variable Dik be 
defined: 

{ 

1 if FJ. represents E~ 
On- o otherwise . 

And let M, = E; Ii;, be the count of frame unitswhich 
represent or "link to" population element k. We will 
call the collection or set of frame units linked to 
popUlation element k, link-group k. Duplication exists 
in the frame when there are some population elements 
which are linked to more than one frame unit, that is 
Mk > 1 for some k. We assume that while Mk'S are 
unknown (difficult andlor expensive to determine for a 
large entire popUlation) M, can be determined exactly 
for a particular unit k and thus for a sample. Assume 
a simple random sample of size m without replacement. 
We will denote this sample of frame units by s. For 
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each sampled unit, we obtain a li sting of all frame units 
that link to it. This set of frame units represents a 
single unique population element k . Since other 
members of this linkage group could have been 
sampled, it is possible to sample a population element 
k more than once. If we think of our sampling as 
sampling without replacement of popUlation elements , 
we also obtain a sample Sp which contains n(:::; m) 
distinct population elements. While each frame unit in 
our original sample s had equal probability of selection, 
each populat ion element in our sample sp did not have 
equal probability of selection, and thus estimators which 
assume we are sampling population elements with equal 
probability will be biased if there is duplication in the 
frame. 

2. CORRECT INCLUSION PROBABILITIES 

We know that the Horwitz-Thompson estimator: 

is an unbiased estimator of the population total, Y. 
Thus if we can compute 7rk for each sampled element k, 
we can get unbiased estimates for population size and 
in general for any variable of interest, even in the 
presence of duplication. The inclusion probabilities , 7rk, 

are straightforward to calculate if we know Mk for each 
sampled unit. If we are interested in the probability of 
selection for population unit k. or equivalently linkage 
group k, of size M" we use the fact that this is 
equivalent to I minus the probability of selecting a 
sample of size m from the frame such that no units of 
linkage group k were selected. This is just the ratio of 
the number of possible samples of size m chosen from 
the (M - MJ frame units which do not include any 
member of linkage group k over the number of possible 
samples: 

(M-M) 
1I =1- m

k 

k ~ 



Example: If we take a sample of m=5 frame unit from 
a frame of size M = 100 in which there is duplication , 
what is the probability that our sample Sp of di stinct 
populationeiements contains a particular population unit 
k for which M, = I, 2? 

For M, = I(Population element k is represented only 
once on the frame): 

95!51 
1001 

This is true in general, for each population unit for 
which there is no duplication, i.e. M, = I , the 
probabi lity of selection is just m/M , or f, to be denoted 
as 7r*. (Recall that since we may sample a given 
population element more than once, n, the number of 
distinct population elements sampled, is a random 
variable and 1r, '" n/N .) 

M, = 2: (Population element k is represented twice in 
the frame) 

Note that this probability is not double the selection 
probability for a population unit without duplication. It 
is interesting to look at this ratio of selection 
probabilities in general. Looking at the general formul a 
for the selection probability when M,=2, we may 
express 1r, approximately as a function of the sampling 
fraction, f = m/M: 
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(
M-M>:) 

1(>:=1 - m 

(:) 
=1- (M-M>:) I (M-m) ! m! 

(M-M>: -m) Iml M! 
=1- M-m M-m-1 

M M-1 

"'1- (1-f)2=2f(1-.!) 
2 

Thus the ratio fli: = 7r.)7r* where Mil: = 2, and 11'"'" is the 
probability of selection for any population element for 
which there is no duplication, may be expressed: 

Thus, as the sampling fraction approaches 0 , eli: 
approaches two. As f gets large and approaches I, r k 

approaches 1. Thus as the likelihood of selection gets 
smaller. the bias due to incorrect assumptions of equal 
probabilities is increased. This ratio rk is interesting 
because it expresses the degree to which the data Yk is 
"over expanded" due to the assumption of known equal 
selection probability. In our example where f = .05, 
the "pi estimator" would over expand Yk by a factor of 
.09797/.05 = \.96. If N were 10(f= 112), then r, will 
be approximately 1.5 and thus estimates which ignore 
duplication will over-expand data for elements with one 
duplicate by a factor of 1.5. If N were 10,000 then r, 
would be essentially 2. 

Since we assume that we may determine Mk for any 
population element k, then clearly we may compute 1r, 

for each sampled element and thus use the Horwitz­
Thompson estimator to obtain unbiased estimates for 
population totals and means. If we define y,= 1 for 
each popUlation element k, then we could obtain an 
unbiased estimate of N, the true population size. This 
is just the sum of the reciprocals of the inclusion 
probabilities for the n distinct population elements in sp' 
This estimator is unbiased for N: 



The variance of the Horvitz-Thompson estimator of a 
population total Y is gi ven by 

and an unbiased estimator of the variance is given by 

(Samdal, Swensson, and Wretman, section 2.8). 
These general formulae are very useful for this situation 
where duplication results lfl unequal selection 
probabilities. 

The second order inclusion probabilities needed for 
these formulae may be determined for the sample by 
the following formula which uses analogous reasoning 
to that for the first order inclusion probabilities. 

891 

3. ALTERNATIVE STRATEGIES 

One alternative "adjustment" for list duplication, and 
one that is currently used by NASS surveys, is the 
conunon survey practice of using a weight or data 
adjustment factor to account for the effect of 
duplication. If a population element k appears on the 
sampling frame M, times, then when sampled the data 
is multiplied by 11M,. Even if the same population 
element appears multiple times in the sample, every 
sampled unit reports. Cox(1993) describes this 
procedure as an adjustment of the weight "associated 
with sampled frame units to reflect the multiple 
selection opportunities for the desired population unit." 
This adjustment obtained by multiplying the sampling 
weight M/m, and the adjustment 11M, results in an 
overall weight of M/(m*MJ. This new weight is not, 
in general, equal to the reciprocal of the probability of 
selection. As shown earlier the ratio rk depends on the 
sampling fraction. Nonetheless, this procedure does 
result in unbiased estimation. 

Suppose x is a data item with x, being the data for 
each true population element k. Then for each frame 
unit I which is linked to element k, we define y~ = 

X/Mk , I = 1 .. M~. Thus we are letting each frame 
unit account for the proportion, 11M" of the data for 
population element k. Clearly the total of the y's is 
equal to the total of the x's: 

Thus a reasonable estimate for X would be 

.. M 
Y=L-Yi' 

i - l m 



Note again that this sum is over the entire sample of 
frame units. This is clearly unbiased for X, since this 
approach is equivalent to a simple random sample wi th 
the frame being the population. Thus Y is unbiased 
for Y = x. 

This technique really obtains unbiased estimation by 
redefining the relationship of the frame to the 
popUlation. If a population element appears M, times 
on the frame, then each of those Mk records accounts 
only for the proportion 11M, of the data for population 
element k. This eliminates the duplication of the data. 

Another approach used to obtain unbiased estimat ion 
in the presence of frame duplication is to define a 
"unique counting rule" which links each population 
element to a single frame unit. An example wou ld be to 
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link each popUlation element k to the frame unit in Mk 
with the largest frame id , etc. In this case, population 
element k is sampled only if this particular frame unit 
is selected. Thus, if duplication were detected after 
data collection, there could be loss of data. 
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ABSTRACT. Estimators in a complex survey usually 
have noninteger weights which must be rounded to 
integer weights to help facilitate data review, Using 
integer weights also eliminates rounding discrepancies 
between mbulated sample data for a given area. This 
evaluation focuses on the effects of systematically 
rounding noninteger sample weights to integer weights 
to produce estimates for the U.S. Census of Agriculture. 
The relative efficiency of the rounding technique is 
measured to determine if there is any potential increase 
in the variance of the estimated totals incurred by 
utilizing integer weights. This evaluation pointed to 
some factors which effect the performance of the 
sys tematic rounding process, and it indicated that the 
over ,md under estimating occurring at the strata level 
balances OUI at the published level. The systematic 
rounding technique increases the variances, but has a 
limited effect on the estimated totals at the published 
levels. 

I. INTRODUCTION 

Several investigators at the Bureau of the Census have 
studied the process of systematically rounding 
noninteger weights to integer weights and its effect on 
the variance of estimated totals. This procedure has 
also, in previous research , been referred to as 
"Weighting Random Subsamples of an Original 
Sample". However, to date only one study has focused 
on agriculture data. Hanson (1969) noted that , assuming 
simple random sampling without replacement, a 
potential increase in variances of estimated totals 
resulted from assigning integer weights. Thompson 
(1978) presented analogous results to those found in the 
previous study, but included the finite population 
correction factor that arises in the variance expression 
for simple random sampling. He noted that in areas 
where a l·in-2 sampling rate is used, the effect of the 
finite population correction could not be ignored. 
Hanson and Thompson s tudied this problem in 
connection with the 1970 and 1980 Census of 
Population and Housing. Griffm (1987) found that 
controlled rounding for disclosure avoidance in the 1990 
Decennial Census produced significant increases in 
variance for both l-in-2 and l-in-6 sampling rates. 
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Chapman (1981) investigated this problem in connection 
with the 1978 Census of Agriculture. He noted 
increases in the variances of between 1.2 % and 3.0 % 
due to integer weighting. However, the rounding 
procedure has changed since this study was conducted. 
This paper reinvestigates the relative loss in precision 
due to integer weighting for estimated totals from the 
1987 Census of Agriculture. 

Data for several characteristics across two states from 
the 1987 Census of Agriculture is used to investigate the 
effects of the rounding technique. For analysis, the 
ratio of the variances of the integer and non integer 
weights is used as a measure of loss. Before presenting 
the results of the investigation we ftfst describe the 
sampling design and weighting procedures used to 
produce estimates for the census of agriCUlture, followed 
by the methodology used to evaluate the rounding 
technique. 

2. BACKGROUND 

To reduce respondent burden, a representative sample of 
the 1987 Census of Agriculture mail list universe is 
selected to respond to questions deemed to be of a 
sensitive nature, such as farm production expenditures, 
value of land and buildings, and other farm-related 
income. A discussion of the sampling design and 
weighting procedure follows. Sample weighting is the 
terminology used by the census of agriculture to 
describe our method of inflating the sample to represent 
the census universe. Certainty farms, cases which were 
expected to have large total value of agricultural 
products sold or large acreage or other "special" 
characteristics, are included in the sample with 
probability equal to one, but are excluded from these 
weighting processes and assumed to have no sampling 
variability. All farms in counties containing less than 
100 farms were also classified as certainty farms. The 
other farms in counties containing 100 to 199 farms in 
1987 were systematically sampled at a rate of I in 2, 
and farms in counties containing 200 farms or more in 
1987 were systematically sampled at a rate of I in 6. 
This differential sampling scheme was used to provide 
reliable data for all counties. 

The weighting procedure produces fmal sample weights 
which account for nonresponse and inflate the sample 
data to represent the census universe. As mentioned in 



the paragraph above we start out with integer weights 
(i.e., 1, 2, or 6), for inflating the sample to represent the 
census universe. but in order to improve the precision of 
our estimates we use post-stratification and an iterative 
raking ratio adjustrnent procedure which in turn 
produces noninteger weights. The focus here is on the 
technique we use to round these noninteger weights 
back to integer. 

The post-stratification procedure assigns sample 
respondents to one of 32 initial sample post-strata 
(ISPS) based on: total value of products sold (TVP), 
acres of land owned, and standard industrial 
classification. Final sample post-strata (FSPS) are 
ass igned alter collapsing initial strata which do not meet 
a specified criteria. Since the sample records are 
subject to both sampling and nonresponse variability, 
the final sample weight is a combination of a 
nonresponse weight and an adjusted sample weight. 

Afler the final sample post-strata have been determined, 
a base sample weight is computed for each stratum. 
This is the total number of noncertainty farms divided 
by the number of noncertainty sample farms. 

This base sample weight under goes an iterative raking 
ratio adjustment which smooths the weights across strata 
within county and produces an adjusted sample weight 
This in turn is multiplied by a nonresponse weight, 

which accounts for nonresponse to the data collection, 
to produce the fmal sample weight. 

All records in the census universe, respondent and 
nonrespondent, are assigned to one of five nonresponse 
stra~1. which are defined based on TVP, previous census 
status and whether the record was identified by a 
discriminant model as having a low probability of being 
a fann and therefore would receive the census screener 
fonn (i.e. , form type is assigned based on the 
probability of a particular census record being a farm. 
There are three different types of census report forms, 
the nonsample census form, the screener form, and the 
sample fonn . The sections on the sample form are 
identical to sections on the nonsample census form. 
The sample form contains additional questions such as 
farm production expenditures. value of land and 
buildings, and farm-related income. The screener form 
is identical to the non sample census form with questions 
added to allow quick identification of nonfarm 
addresses). Estimates of the proportion of census 
nonrespondents that operate farms are computed for 
each stratum in a state using results from the census of 
agriculture nonresponse survey and applied to the total 
number of census nonrespondents in that stratum. The 
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number of census nonrespondents that operate farms for 
each county by stratum is then derived. Within each 
stratum in a county, a non integer nonresponse weight is 
calculated and assigned to each eligible respondent farm 
record. The noninteger nonresponse weight is the ratio 
of the sum of the estimated number of nonrespondent 
farms from the nonresponse survey and the number of 
eligible census respondent farms to the number of 
eligible census respondent farms. Stratum controls are 
established to ensure that this weight is never greater 
that 2.0. This noninteger nonresponse weight is used in 
the calculation of the final sample weight for sample 
items. 

The integer weighting process takes place within 
nonresponse strata (NRS) within final sample post-strata 
(FSPS) within a county. The resulting value within a 
stratum is usually a noninteger number of the form 
(W + pl. where W is an integer and 0 $ P < 1. All 
records within a nonresponse strata within a final 
sample post-strata have the same noninteger weight 
We assume, as did the authors of the previous studies, 
that the sample weighting process involves selecting a 
simple random sample without replacement of n units 
from a population of N units and that the integer 
weightiing process involves selecting a random 
subsample of size n" which is equal to r np 1 with 
probability P : np - L np J or equal to L np J with 
probability Q : 1 - P. The symbol r x 1 denotes the 
smallest integer greater than or equal to x and L x J 
denotes the largest integer less than or equal to x. Each 
of these n, units is given a weight of (W + 1), where W 
is equal to integer part of the noninteger value. The 
weight W is assigned to the remaining n, : n - n, 
sample units in the stratum. Actually systematic 
sampling is used, but for estimating the variances due to 
rounding we are assuming simple random sampling. 

Noncertainty nonsample records are assigned an integer 
sample weight of zero. Noncertainty sample records 
proceed through the systematic rounding process as 
shown in the example below. 

Consider a FSPS/NRS combination within a county with 
25 total records and 7 sample records. Each of the 7 
sample records have a noninteger sample weight 
(NISW) of 6.20 which needs to be converted to integer 
sample weights. To accomplish this, all 7 records first 
have their sample weight truncated and a systematic 
sample of these records is then selected to increase their 
weights by one to account for the remainder. 

The noninteger sample weight is separated into an 
integer portion, (W), and a fractional portion, the 



remainder. The sampling interval is the reeiprocal of 
the remainder. Here, the sampling interval is (110.20) 
= 5.00 Multiplying the number of sample cases (7) by 
the remainder indicates that l AO records should be 
rounded up, which implies that I or 2 records will be 
rounded up. Therefore, the probability is 40 % that a 
second case wil l be rounded up to 7 and 60 % that it 
will remain 6. The integer sample weight is equal to 
the initial integer weight for five or six of the sample 
cases. One or two of the seven cases becomes part of 
the systematic sample which is increased to the initial 
integer weight plus one \W + I), to account for the 
remainder. This implies that n, is a random variable. 
The sampling scheme in Table I illustrates the rounding 
process. 

Table I. ' Example of systematic rounding 

SAMPLE NON_ 0NmAL 1NTl!OEJlt SAMPU!: 
CASE '""."' "","ER WBIGKT AFTER 

,,",,'ER """"" ~ .. " SYsnMAnc ROUNDINO 

"" .. " (W) 

""'., OtfflCA:!l8 Th'O """ 
1I0U'NDED UP ROUNDED UP 

, 6.20 6 6 6 

, 6.20 6 6 7 

) 620 6 6 6 

, 6.20 6 6 6 

, 6.20 6 7 6 

6 6.20 6 6 6 

7 6.20 6 6 7 

I Total I 43.40 I 42 " .. 
3. METHODOLOGY 

This study uses the data from the 1987 Census of 
Agriculture to examine the rounding teehnique. 
Explanation of the methodology follows. 

Assume sample variable X, has the following stratum 
total (l), population mean (2) and population variance 
of the X:s (3). 

X= ( I) 

N 

LX' 
j • 1 

N 
(2) 

895 

(3) 

Here our stratum refers to the level at which the integer 
weighting take place (i.e. , the nonresponse strata within 
final sample post-strata, FSPS/NRS). 

3.1 Estimate and Variance of the Estimated Total 
Using Integer Weights 

We restate the assumptions from the previous section 
(i.e., that a random subsample of size n, is selected 
from the n original sample units to be given a weight 
\W + 1) and n, is selected to be given a weight W). 
Applying systematically rounded integer weights to the 
variable X produces the following estimate of total at 
the strata level. 

n. 

LX, 
i • 1 

n, 
and X = a, 

n, 

LX, 
i • , 

n, 

sample means of n, and n, respeetively. 

are the 

The covariance of the sample means Xn• and Xn, is 

because the samples of size n, and n, are simple random 
samples from the population of size N. 

The fmite population correction factors for the 
samples n, and n, are 

f = tap J f = n - t""J 
11 N' 21 N 

if the number of sample cases 
receiving the weight \W+l) is L np J. and 

f = rn,p l f = n- r l3P 1 
12 ~. 412 N 

if the number of sample cases reeeiving the weight 
\W+I) is r np l. 

The variance of the integer weighted estimator, 

VAR CRT) , is made up of two components. The first is 
the variability arising from the fact that the number of 



cases. n\. selected to receive a weight (W+I) is a 
random variable. 

px/ [fnp l (W+1)'" (n - fnpl) w - n {W+pl)l 

... 0 Xf(2 ( I np J (W+1) + (n - I np J ) w - n (w+p) j2 

The second is variability among the data items which 
receive integer weights (W) or (W+ I). (i .e .. the variance 
arising from th e sa mpl e cases) . 

P [ ( r np 1 (W+l)2 (l - ( u l 52) 

... « n -f np l) W2 (1 - tu) 52) 

- (21 npl (n -I npl 1 W (W+l1 S'II 
N 

- 0 ( I npJ (W+l)2 (1 - fa) 52) 

... «n - I np J) Wl (1 - t n ) S2) 

- (2 t n:p J (n - t np J) W ( W"'l) s:)] 
To simplify the work. n and W are considered fixed 
even though they are random variables. 

3.2 Estimate and Variance of the Estimated Total 
Using Noninteger Weights 

Applying noninteger weights to variable X produces the 
following weighted estimate at the strata level. 

The non integer weighted estimator has a variance of 

VAR(J(NI) = (w+p)'n(l-f)S' 

where f = .!! is the finite population correction factor. 
N 

As a me.1sure of accuracy we calculated the relative 
efficiency of the two variances as follow s. 

Relative Effi c iency = 

4. RESULTS 

VAR(XI ) 

VAR(XNr ) . 

Data from the Su1tes of Delaware and Massachusetts 
were used to investigate the effects of the rounding 
technique. Due to space constraints. only the results 
from Delaware are listed. The integer weight estimator 
and the non integer (constant) weight estimator were 
compared for three major sample characteristics -- value 
of land and buildings. interest paid. and total farm 
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production expenses. The differences in estimates of 
the characteristics and a comparison of their sampling 
variances were examined. The relative efficiency of the 
two estimators was measured to determine accuracy . 

4.1 Differences in Estimates of Farm Characteristics 

In summarizing the results. the focus is fust on the 
effect of systematic rounding on the estimates of several 
variables at the county level. which is the lowest level 
at which the census of agriculrure publishes data The 
results indicate that minor discrepancies at the strata 
level due to systematic rounding accumulate to sizable 
differences at the published level for some farm 
characteristics. Differences between the weighted 
estimates for several characteristic are shown below at 
the published level. The percent difference is the ratio 
of the differences in the estimates. Generally. the 
difference due to rounding is between ± 3 % at the 
county level for Delaware and Massachusetts. The 
tables below show how the discrepancies due to 
rounding vary by state. county. and variable. 

Table 2. Weighted Estimales and Differences of the Total 
Farm Production Expenses Variable for All 
Counties in Delaware. 

I Dell ...... _ Tcul F.nn ProWaJon B>pmxa: ($) 

wei&tllcd E.aim.u ""'- ,-
Di1f~ 

""'"' lnl</IU (y) N~(NI) txFfooJ ·Nl IOOOWFINI 

No. 16,$43.93 1 26."2."-'6.00 -uu.oo -0.03 
c ... 

,- 15,1)9.1 37 75.7 14 .197.63 11.4.93931 0.17 

,-, 274.411.46$ 274,4}4,716.98 - 16,217,. ·0.0' 

I ,- I 317.IOI-'D I 317,OO I,l9lUI I 100, 14139 I ,.~ 

I 

I 
The integer weighted estimate for total farm production 
expenses is over estimated as companed to the 
noninteger estimates for the state of Delaware. A large 
pan of this is due to Kent county. New Castle and 
Sussex counties integer weighted estimates are relatively 
small under estimates. 



Tablot '3 . Weighted Estimates and Differences of the 
Interest Paid Variable for All Counti es in 
Delaware. 

I Deb"'~ _ II ....... 1'00II (S) I 
W~i&I>«d Eailnate ""- ,-

Dil1~""""" ,-, In", .... Nonlntcgu 

"W 1.$11..131 1.$09.379.4-11 3,451.$2 ,." 
'''"' 
K~I. ' .m.'", '.m .22 I.60 , ' .735064 ·0.09 

,-, 1.)64.715 '~'.7'7.os 9,967.95 0.12 

I ,- I 1' .• n.0l2 I 14.1 63)01'.14 I 1.613.16 I , .. I 
The integer weighted estimate for the interest paid is 
over estimated as compared to the noninteger estimates 
for the State of Delaware by 0.06 percent. Kent county 
is under estimated while New Castle and Sussex 
counties are over estimated. 

Table 4. Weighted Esti mates and Differences of the Value 
of Land and Buildings Variable for All Counties 
In Delaware. 

I Deb"''''' " Vol ... of LaN _ Build~ ($) 

W<4fIItd Estimate """- ... -
""'-

Co ... y 

""" N"""«< 

"w U4.n7.l40 2S4.20~.J01_U $'''')'.12 ' n 
c ... 

K~,. 344.669."3 3+t, ISS,.S16.99 $1 3,966.01 0.1$ 

,~ ' 96.t2 1.$ )4 .97,426, 164.00 .604,6)0.00 -0.12 

I ,- I 1.096,261,1$7 I 1,09S,716.91U7 I 4'1 .174.13 I '.M 

I 

I 
Again, the integer weighted estimate for the value of 
land and buildings is over estimated as compared to the 
noninteger estimates for the State of Delaware by 0.04 
percent. Sussex county is under estimated whi le New 
Castle and Kent counties are over estimated. 

The above lables show that all three sample variables 
are over estimated at the slate level while the county 
level is both over and under estimated. Even though the 
integer and noninteger weighted estimates have very 
large absolute difference, the percent difference is less 
than I % for both states. Large absolute differences are 
not significant because the expected values of the 
integer and noninteger estimates are equal. 

Over half of the counties in Massachusetts are over 
estimated for all three sample variables, total farm 
production expenses, interest paid, and value of land and 
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bui ldings. These counties percent differences range 
from 0.02 to 0.96 percent. Estimates for about 15 % of 
the counties are identical (i.e., integer vs. noninteger 
estimates) and about 20 % of the counties are 
underestimated with percent differences ranging from 
-3.99 to -0.06 percent. Overall, the difference in 
weighted estimates for Massachusetts is over estimated 
at II % for total farm production expenses and 31 % 
for interest paid and value of land and buildings. 

4.2 Comparison of Sampling Variances 

This section focuses on the effect systematic rounding 
has on the variance of the estimates. To help 
understand the results, we refer you back to our sample 
weighting process which was discussed in the 
background section. To summarize. the sampling design 
and weighting procedure used was to assume a simple 
random sample without replacement of n units from a 
population of N units. The noninteger weights were 
assigned independently within FSPSJNRS strata within 
a county and were of the form C'N + p). where W is an 
integer and 0 ,;; p < l. A proportion p of the n original 
sample units (n, units) were selected and given the 
weight C'N + 1). The remaining units within the 
FSPS/NRS combination (n, units) were given the weight 
W. 

The tables below shows variances and relative efficiency 
scores for strata and counties in Delaware. Variances at 
the county level are assumed independent among strata. 
These estimates are used for illustrative purposes only. 
In general, the relative efficiencies ranged from 1.0000 
to 1.9705 at the strata level and 1.0023 to l.017l at the 
county level. 

Table 5. Relative Efficiency of Sample Variables in 
Delaware at the County Level 

I Delo"' .... 

Rd.Mi"" Elf"ocimcy 

"""' T~P>lm "'''''''''hid V&b: 1lIt.-! -- and Baildi>p 

... ""'" 1.0023 ...... 1.(l(W3 

,- 1.0171 .. "" 1.0091 

,- 1.00)9 U)(M7 1.0074 

I 

The counties and variables in Delaware have up to a 
2 % increase in variance due to integer rounding. The 
majority of the strata in Massachusetts have up to a 2 % 
increase in variance, 



Table b, Variance and Relative Efficiency of Selected 
Sample Variables in DeJaware a[ the Strata Level. 

V.nWle S, ...... n v.,;...,. '''"'~ Efrocicn:y 

1"l<eu W"£I1' "-Woiihl 

T .. &. lIUII,112.~st 1I1,U9,lfl,2S9 1,0016 
,~ CW< 
P,od ... :;,,,,.., (17,4) 

-~ ,," 101,))9,046 6lL ,91 9,l19 ,.,." 
(1 7, OJ 

11'1<""" ,~ 41,9$9,1 14 41,9:10,944 ,.-
" .. (5,3) ,_. 9904,416,441 97f.917,615 1.0179 

(I, j) 

,~ 3,136,062 '''~ .. -
(17,0) 

v.~gf ,," 4,4H,9Il,~71 3,110.031,494 1,1716 LoooO _ 
(13,0) 

S"ild..,. ,- 9U,D9,711,410 914,451,125,739 1.0010 
(I. 3) 

Each stratum is identified by the county and (FSPS. NRS), 

About 53 % of the strata in Delaware and 45 % of the 
strata in Massachusetts produce a relative efficiency 
between 1.0000 and 1.0199. About 44 % of the relative 
efficiencies scores produced in Delaware and 
Massachusetts are undefined because the sampling 
variance is zero or the finite popUlation correction factor 
is I. 

The investigation pointed to some factors which effect 
the performance of the systematic rounding process. 
The data showed that because our integer weighting 
process takes place within NRS within FSPS the sample 
sizes within strata are usually small , generally between 
one and ten. As we can see in the interest paid variable 
(Delaware, Kent county, FSPS 17, NRS 0), the relative 
efficiency created is very high because the S' is small 
and the variance due to integerization is very large. 

Even if S' = 0, the integer variance, VAR (gI l , can be 
large because the integerization variance is the primary 
tenn . 

We have seen that systematic rounding produces large 
absolute differences in the weighted estimates but small 
percent differences. The same is true for the variances, 
The relative effi ciency between variances is small even 
though large differences occur between the estimated 
variances . The problems found in this study occur at 
the straL1 level and tend to even out at the published 
level. The above factors (problem areas) point to the 
level at which the systematic rounding takes place, 
Rounding within the FSPS/NRS combination limits the 
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performance of the rounding technique, due to the small 
number of sample cases avai lable. This was not a 
problem when Chapman (198 1) investigated the integer 
weighting process, because the noninteger nonresponse 
weights and the base sample weights, were rounded at 
different stages and then combined to produce the final 
sample weights. The above data indicate that although 
there is some over and under estimating occurring at the 
strata level, it seems to balance out at the publishing 
level and implies that the systematic rounding technique 
does increase the variances, but has a limited effect on 
the estimated totals at the published level. 
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