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INTRODUCTION 

The U.S. electric utility industry has invested about 
$0.5 trillion dollars (constant 1984 overnight 
construction costs) in 108 currently operable nuclear 
power reactors that together generated 619 billion 
kilowatt hours or 23.8 percent of our electricity in 1992, 
clearly a major sector of the U.S. Economy. 1 

Yet, U.S. nuclear power plants have been, on the 
whole, a disappointment. This technology was 
originally expected to continuously generate electricity 
that would be too cheap to warrant metering. Further, 
these plants were expected to last 40 years or more 
before they were to be reconditioned or shut down. 
Neither very low cost power nor long life seems to have 
materialized. As a result, no new nuclear power plant 
has been ordered since 1978 and about 70% of the 
plants ordered in the last 25 years have been canceled, 
deferred indefinitely, or rejected.2 

However, there appears to be considerable variation 
across plants, or establishments, in their initial 
construction costs, their operating costs, and their 
operating rates. Some plants produce power at costs 
exceeding those of modem coal-fired plants, whereas 
some other utilities and specific power plants have been 
quite successful. Several companies for example, are 
considered as model nuclear power plant operators (e.g. 
Duke Power). Further, nuclear power offers one 
substantial hope to slow or even reverse C02 emissions 
and global warming; it is considered by many to be a 
most attractive alternative power sour:ce. 

Therefore, it would be useful to know the reasons 
for the specific success and failures. This study of 
individual establishment efficiencies was undertaken to 
help deterrhine the causes of the observed variation in 
nuclear power plant operations. 

This present study engages the problem of 
efficiency using a plant level panel data set, and a 
production function approach. Most past economjc 
studies of nuclear power plants have been cost function 
based. However, the assumptions necessary, the lack of 
relevant price data, and the confounding of "nonnal" 
maintenance and operating costs with capital and safety : 
maintenance has led to problematic results. For 
example, it has been almost impossible to disentangle 
production costs from costs associated with improving 

the plant's ability to function or to meet safety 
requirements. 

This study uses an establishment level data set that 
at best will be difficult to assemble for future. years. 
The Energy lnfonnation Administration (EIA) will no 
longer analyze the Federal Energy Regulatory 
Commission (PERC) data collection forms and report 
the data used herein. 

MODELING NUCLEAR POWER PLANTS3 

Nuclear power plants operate in a market in which 
real prices are difficult LO observe. This is so because 
there is no fonnal market for the risk associated with 
the operation or failure of nuclear power plants, many 
of the costs associated with nuclear power plant 
construction and operation can be either passed through 
to the rate payer or receive favorable tax treatment, and 
the nuclear power plant is only part of the generation 
capacity a utility owns or has access to. 

Therefore, in this paper, profit maximizing behavior 
is assumed, a production function is postulated which 
needs no prices to estimate, thus, estimation and 
analysis follow. The production function assumed is a 
Cobb-Douglas (CD) fonn which has a long history in 
production economics, and is relatively simple. 
However, this form restricts the elasticities of 
substitution to unity, and may lead to indeterminate 
input combinations for the individual establishmcnt.4 

The general production function may be written as: 
(1) Q = G, [MW, K; F, Z] c"'.v + G2(L, 

N). 
Here, 

Q= 
MW= 

V= 
L= 
N= 
e= 

Millions of kilowatt hours generated, 
Installed "name plate" capacity in megawatts, 
a scale variable, 
Kilograms of fuel burned, 
Flow of services from capital stock, 
Operating utilities cumulative nuclear power 
reactor experience, 
Vintage of reactor or plant, 
Labor input, and 
All other inputs, 
The Naperian base 



w== A technical efficiency parameter associated 
with vintage 

Note that separability in L and N is assumed because of 
data limitations. 

A Cobb Douglas realization of G 1( ·) is then: 
(2) Q·= MW111 K<a p3 z«4 ewv. 

Letting lower case letters denote natural logarithms, we 
can write: 
(3a) 

wv1• 

I assume further that capital stock in place at end of 
period t-1 proxies for the flow of services from capital 
in period t (as modified by capitalized rentals), and that 
the cost of fuel proxies for the quality adjusted quantity 
of fue!..s 

The final data set used in estimation contains 821 
observations on 75 plant sites (33 with more than one 
reactor). The original data consists of about 1000 
observations at the power plant level, some with two or 
more reactors, covering the period 1976 through 1991. 
The data were assembled and manipulated in LOTUS 
123, whereas estimation was performed using Time 
Series Processor Version 4.2A on SUNY's ES9000. 
The data was taken from EIA documents, primarily 
Electric Plant Cost and Power Production Expenses and 
its predecessors, the Handy-Whitman publication Public 
Utility Constmction Cost Bulletins and from New York 
State Electric and Gas data sets which were based upon 
trade data sources. 

As usual, d~tailed data sets at the establishment 
level are fraught with problems. In some cases of 
multiple reactor plants, some, but not all, data were 
available reactor by reactor; in others the data was not. 
Thus, the data were aggregated so the observational unit 
was the plant or site, not the reactor. Where necessary, 
the aggregation was done by weighting by either name 
plate capacity or by output. Another major 
complication arose because of capital disallowances. 
Regulatory agencies have disallowed certain significant 
capital costs from inclusion in rate bases. In many 
cases, EIA source documents were adjusted to reflect 
these disallowances, but as the capital was believed to 
be still in place, where the dollar value of the 
disallowance was known, it was restored. Finally, some 
data was missing. Some times, for example in early 
years, a plant would sparsely report information. Some 
times this was then imputed by EIA, or by trade 
sources. When EIA imputed the ob$ervation, it 
generally was not so stated. When trade sources 
imputed or estimated the data it is noted and a dummy 
variable was used as a flag. The variables definitions 

follow those of the EIA's.6 The variables in addition to 
those noted above are: 

KT = 
H = 
R = 
E = 

F = 

Total capital value (dollars), 
Hours connected to load, 
Capital rents (dollars), 
Annual operation supervision 
and engineering expenses 
(dollars), 
Annual fuel cost (dollars), 
and 

C "" Total other operation and 
maintenance cost (dollars). 

Note all capital values as reported are at end of the 
reporting year and in historic dollars. All flows (e.g. 
hours) are values for the reporting year and dollar 
values are also historic. Deflation of stocks of capital 
were made using the appropriate regional Handy
Whitman iffdex for capital additions. The characteristics 
of the data as used in this paper (divided by the scale 
variable, MW) are noted in Table I. 

ESTIMATION 

The first estimation procedure was to use ordinary 
least squares to estimate a variant of equation (3), here 
noted as: 
(4) q/m1 = a1 + 3z k1_1/m, + a3 c;m, + a4 f/m, + as 

e/m, + ~ Z. + a7 INV /m1 + a8 H1 + w v, + 
A'D, +fAt· 

All tenns are as above, except the log of the net real 
investment in capital stock is denoted inv and c denotes 
the log of all operating and maintenance costs exclusive 
of fuel, f, and engineering expenses, e. Joint ownership 
and other dummies for imputation etc., are denoted by 
the vector D, while operating hours by H. The plant 
subscript, i = 1--- 75 is suppressed and fAt is an error 
term. Results, indicate a modest overall fit (adjusted R
squared of 0.410) and coefficients that have the 
expected values and signs. 

These regression results were used to reduce the 
number of variables (those having t-statistics less than 
one and no theoretic basis for inclusion were dropped) 
and to identify "influential" observations, using the "hat" 
matrix test [Mosteller and Tukey, (1977)]. A dummy 
for each of the 58 influential observations was 
introduced and the regression rerun. The adjusted R
squared was 0.415. 

Again the model was reduced and now reestimated 
via the panel routine of TSP under the assumption that 
Panel data should be treated as such {See Nerlove and 
Balestra (1992)]. The panel routine provides a total 
OLS estimate, an OLS estimate on the mean value of 
variables for each establishment, a fixed effects estimate 
(where the intercept term varies by establishment), and 
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a random effects model estimation (where the model 
contains the usual stochastic term plus a stochastic 
component to the intercept). The data can be 
considered as a drawing from a larger population of 
nuclear power plants so the random effects model is a 
theoretically reasonable one. 

The results of estimating a modified version of (4) 
as a panel are shown in Table II. A Hausman (1978) 
test, conducted to test for correlation between the error 
of the random effects model and the regressors, 
indicates that I can not reject the null hypothesis of E 
(1-1;/X11) = 0 at the 90% confidence level, [H calc. = 
2.836, X\ 10% = 2.706], but can at the 95% level. 
Further, the results of an F-test indicate that the 
intercepts are not equal for each establishment [F(652, 
158) = 3.996, F crit. (500, 150) = 1.37]. Thu~ while all 
the results of the panel are given in Table II, I discuss 
only the random effects model. The estimators that are 
significant arc the three cost categories, the years of 
operations, the vintage, the hours operated, and the 
"inlluential'' observation dummy. Note that engineering 
costs (associated with downtimes?), years of operation 
and vintage are negative; whereas fuel, other costs, and 
hours operated are positive. Overall, the fit is decent as 
49% of the variation in output per megawatt of capacity 
is explained. In the log form as estimated, the 
coefficients can be interpreted as elasticities. Thus we 
can interpret for example, the results that output 
increases 37.2% for a 100% increase in fuel 
expenditures. Overall, these results are encouraging. 

SUMMARY AND FUTURE WORK 

In summary, I have assembled an establishment 
level data set and explored its economic implications. 
Theory suggests this data is best modeled using a 
production function. A simple Cobb Douglas 
production function is fitted and estimation led to a 
narrowing of the model. Panel results are encouraging. 

Several problems remain. These are the 
unsatisfactory nature of the current capital stock 
variable, the residual diagnostics (one suspects serial 
correl~tion exists), the estimation procedure, frontier 
efficiency, and time aggregation. These will be 
explored in future work, as will more complex 
functional forms for the production frontier . 

On a negative note, I observe that in the future, data 
availability will be problematic. The EIA will no longer 
report data collected by FERC and economic studies 
like this will be hampered. 
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Pootnolcs 

As of February 28, 1993, there were 116 
nuclear power generating units in all stages of 
constructions and operation, Monthly Energy 
Review, Pg. 97. 

Public utility executives and industry watchers 
suggest that no utili ty will order a new nuclear 
power plant until there is a practical plan to 
dispose of spent fuel assemblies, and someone 
(U.S. DOE?) undertakes the construction and 
operation of a new demonstration plant to 
serve as a pauern. 

A detailed discussion of this problem is in 
Kokkelenberg (1993). 

Sec Cobb and Douglas fl928] . 

Three other candidate production functions will 
be investigated later but are not further 
considered herein. The first is the Generalized 
Leontief [Diewert (1971)] the second is the 
Constant Elasticity of Substitution (CES) 
production function. [Arrow, Chenery, Minhas 
and Solow (1961)], and the third transcendental 
logarithmic (Translog) form (Halter, Carter, 
and Hocking (1957) and Christensen Jorgensen 
and Lau (1973). 

See Electric Plant Cost and Power Production 
Expenses 1991, and, Hewlitt (1991), Pg. 47ff. 



Table I 
Data Characteristics 

Variable Mean Minimum Maximum Strl. Dev. 

Log output 8.15 -8.15 9.02 2.26 
Log lagged capital 12.51 5.35 14.56 0.74 
Log Engineering Cost 8.88 4.67 11.76 1.09 
Log Fuel Costs 10.12 -5.83 12.59 1.48 
Log Other Costs 10.64 8.56 12.78 0.68 
Years Operated 10.16 I 30 5.84 
Hours 6638 -0- 8766 2078 

All variables, except dummies (0, 1), years operated, and hours are scaled or divided by the megawatt or "name 
plate" capacity of the unit. 

Table II 
Panel Estimation Results 

Cobb Douglas Production Funac.ion 
Log of Kilowatt Hours as Dependent Variable 

(Standard Errors in Parentheses) 
821 Observations 

Variable/ Full Between Est. Fixed Random 
Statistic Data on Means Effects Effects 

Intercept -7.346 -8.103 NA -5.824 
( \.822) (4.500) (2.367) 

Lagged Capital 0.027 0.139 -0.077 -0.032 
(0.137) (0.406) (0.165) (0.156) 

Cost Excluding Fuel 1.123 1.106 t.053 t.073 
and Engineenng (0.154) (0.399) (0.222) (0.194) 

Fuel 0.317 0.217 0.476 0.372 
(0.049) (0.116) (0.071) (0.060) 

Engineering -0.250 -0.216 -0.521 -0.384 
(0.090) (0.198) (0.140) (0.118) 

Years Operated -0.105 -0.023 -0.077 -0.094 
(0.024) (0.065) (0.033) (0.029) 

Vintage -0.132 -0.071 -0.321 -0.100 
(0.029) (0.065) (0.283) (0.039) 

Investinent -0.022 -0.076 -0.013 -0.016 
(0.015) (0.076) (0.014) (0.014) 

Joint Ownership 0.176 -0.191 0.283 0.216 
(0.190) (0.492) (0.200) (0.197) 

Influential Obs. 0.868 0.949 0.362 0.634 
(0.265) (0.6 12) (0.295) (0.280) 

Hours Operated 0.0006 0.0005 0.0006 0.0006 
(0.00003) (0.0001) (0.00004) (0.00004) 

Standard Error 1.728 0.892 1.521 1.598 

R-Squarcd 0.422 0.445 0.449 0.487 
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1. Introduction. Each year in August Statistics 
Finland collects data from business firms in the 
commerce sector to estimate the average salary of 
employees in different occupations within this sec
tor. Stratified sampling is used. The main concern in 
this paper is with the estimation of average salaries 
from this material with takes the sample design 
into account. The primary sampling unit in this 
case is the individual finn, which implies that data 
on salaries at the employee level are clustered by 
firms and accordingly that an appropriate design is 
needed for the calculation of average salaries. The 
design employed here is stratified one-stage clus
ter sampling: this is used to calculate the average 
salaries in the commerce sector as a whole as well 
as in certain occupational groups within this sector. 
The results are compared with the figures obtained 
with three other designs. 

2. Sample design 

The sampling frame is Statistics Finland's Business 
Register, which divides business firms in the com
merce sector into two subclasses. The first compris
es all finns that are mem hers of the Con federation of 
Commerce Employers LTK (for convenience, L TK 
firms). From this subclass the Confederation col
lects census data on salaries in different commercial 
occupations. The total number of employees in this 
subclass is 190,217. The average salaries calculated 
on the basis of complete data sets will be used as a 
point of reference in subsequent comparisons. 

The other subclass comprises fimls that are non
members of the Confederation of Commerce Em
ployers. From this subclass, Statistics Finland has 
selected a stratified sim pie random sam pie by using 
the individual firm as the primary sampling unit. 
The subclass consists of a total 57,762 commercial 
employees, out of whom 13,987 are inclpded in the 
present sample. How, then, should the average 
salaries of different occupations be estimated from 
this sample? 

The sampling frame for the present sample is the 
1988 Business Register, from which the smallest 
companies (those employing 1-2 people) have been 
excluded. This leaves a population of 25,345 com
panies, which are stratified into five categories by 
number of employees and also ~nto five categories 
by branch or line of business, giving a total of 25 
strata. Sampling fractions vary by stratum; in some 
cases all firms are included, in others only part of 
them. The order in which individual firms appearin 
the Business Register is then randomized by strata. 
Next, starting from the top, the required number of 
units are sampled from each stratum. Insofa r as the 
sampling takes place at the firm level, the sample 
design may be described as stratified one-stage ran
dom sampling without replacement. This type of 
sampling is below referred to as STRWOR. If con
clusions were to be drawn for the firm level, then 
the analysis would be carried out within a stratified 
simple random sampling design. For example, this 
sort of sample design is well-suited to the analysis 
of turnover and similar data at the finn level. 

However, the purpose here is to estimate the aver
age salaries of employees in different occupations. 
This implies a different interpretation of the sample 
design in that the individual employee who is the 
unit of analysis proper is not the primary sampling 
unit. The selection of a certain firm into the sam
ple means that all its employees are also included. 
Each firm that is selected should therefore be inter
preted as a primary sampling cluster the members 
of which comprise all the firm's employees. This 
sample design is described as stratified one-stage 
duster sampling STRCLU. There is only the one 
single stage in the sampling procedure; that is, the 
sampling of the firm. Within that firm, then, da
ta are collected on the salaries of all employees. 
The analysis of employee data in company cluster 
design is discussed in more detail in the health 
studies published by the Social Insurance Institu
tion (Lehtonen, 1988). 

The specific concern here is with the regular month
ly salaries of commercial occupations at the time of 



measurement in August 1991. These occupations 
are grouped according to the classification devel
oped by Statistics Finland. Official Statistics regu
larly publish the average salaries of22 occupational 
groups, but some of these categories are so small 
that for reasons of privacy protection only the job 
title can be indicated. The focus here is restricted to 
those occupational groups that occur in at least 50 
sampling units or firms. One item that is obviously 
of special interest is the average salary for the whole 
commerce sector, which in the present sample de
sign comprises 744 firms or clusters with a total of 
13,987 employees. When weighted by the inverse of 
the sam piing fraction, the size of the corresponding 
population is 57,762 employees- which is the same 
figure as that given in Official Statistics (see Palkat 
1992:25). 

3. Mean estimators and their weights 

For the present kind of rna terial it is possible to con
struct different types of mean estimators depending 
on how far the sample design is taken into account. 
The following presents four alternatives; the results 
for each calculation are given later. 

In a simple random sampling SRSWOR the finn 
level is omitted and the sample at the employee 
level is interpreted as a simple random sample of 
the employee population. Here the corresponding 
estimator of average salary is 

{1) 

where Yhki is the salary of the i1
" employee in the 

hth stratum of the kth firm and the joint sample 
size n = J3, 987. As we can see, the same inflating 
weight N /n is here applied to all employees; this 
is the inverse of the sampling fraction. The total 
number of employees in the population is f.1 = 
57,762, whi9l means that the weight is Njn == 
57,762/13,987 = 4.13. This coefficient could only 
be justified if the sampling had been carried out 
at the employee level and if neither stratification 
nor clustering had been done. In the present case 
neither of these conditions hold. As a general rule 
it is possible to calculate this sort of mean estimator 
even from complex sample designs. Its variance 
is useful in determining the estimate of the design 
effect or de ff, a measure which summarizes the 
effects of design complexities on the results. The 

def f is for the mean as a ratio of two variance 
estimators 

(2) 

where p(s) refers to the actual sampling design 
and iimwor(fJ) is the variance estimate of ii from 
theSRSWOR design. If the def f is close to one, the 
actual sample design has no effect on the standard 
errors of the estimates. In this case analysis of the 
material requires no sample design codes but can 
be carried out by using common software packages 
such as SAS, SPSS and BMDP. In situations where 
duster sampling is used (as in the present case), 
the def f is typically much higher than one. This 
means that for purposes of statistical analysis it is 
necessary to use design codes and to do the actual 
calculations by using specialized software such as 
SUDAAN or CARP. The deffs of the calculations 
performed here are shown in the Tables in the 
Results section. The figures are much higher than 
one. In the simple random sampling design the 
def f coefficient is by definition one (deff = 1). 

Stratified simple random sampling STRWOR. 
This design is used by the Finnish Official Statistics. 
Different weights are chosen for different strata. 
The estimator of average salary is 

- "' f·h " "" . Ystrwor = L_.; ;--- LJ LJ Yhki/ N, 
h h k i 

(3) 

where N is the sum of weights, or in this case 57,762 
employees. This figure corresponds to the number 
of employees in the sampling frame population and 
also appears in the Official Statistics. The weight is 
quite simply Nnfn,., or the inverse of the sampling 
fraction in stratum h. lt is noteworthy that the 
weight remains constant for all employees in the 
same sh·atum even if (as indeed is the case in prac
tice) they work ford iffercnt companies. in stratified 
sampling the de f f should usually be smaller than 
one (deft< 1). 

Stratified cluster sampling; clusters of equal size 
STRCLU, where it is assumed that the clusters 
are of the same size. Here the mean estimator 
.is the same as that used in the Official Statistics 
design. However, the designs produce different 
calculations of standard error, which are used for 





In this printout the def fs are higher than one even 
though they should usually be smaller than one in 
st:ratifiedsimplerandomsampling(de// $1).0ne 
possible explanation is that the stratification has 
been carried out not at the level of employees but 
at the level of firms, which means that the raising 
factor used by Statistics Finland at the employee 
level has not been consistent with the sample design 
employed. On the other hand, it was also found 
when thesamplematerial was examined afterwards 
that some firms had outgrown their original size 
category. This is explained by the three-year time 
lag between the sampling frame (the 1988 Business 
Register) and the actual sampling date in 1991. 
For instance, a firm that in the sampling frame is 
classified as having 5- 10 employees may have 
grown to employ 22 people; in other words it 
should actually be in the stratum 20-50 employees. 
This, however, provides only a partial explanation 
for why stratification does not lend itself fully to 
improving the accuracy of estimation. 

The corresponding calculations have also been per
formed for the three other designs, which have 
different weightings of employees and which take 
the sample design into account to different extents. 
The most important of these designs is quite obvi
ously STRCLUWGHT, which incorporates all the 
information concerning the sample design. The 
results of the calculations based on these sample 
designs can also be compared with the statistics 
on average salaries in the member companies of 
the Confederation of Commerce Employers, which 
represent a total of 190,217 employees. The statis
tics compiled by the Confederation can be regarded 
as a complete enumeration of the population con
cerned: they collected data on the salaries of all 
employees in their member firms in August 1991. 
In the Table below, these data are shown on the line 
'CENSUS LTK'. The Statistics Finland sample specifies 
the estimated numberofemployeesat 57,762, which 
means that the figure for the whole sector in August 
1991 would have been 57,762 + 190,217 = 247,979 
full-time employees. 

Table 2. Average salary of service sector employees in 1991 on the basis of different criteria in August 1991. 

SaJDple design Weighted Average Standard detf 
sample size salary error 

SRSWOR WGHT-NO 57762 
STR WGHTsKERR 57762 
STRCLU WGHT=XERR 57762 
STRCLU WGRT=CLUWGHT 57762 
CENSUS LTK REGISTER 190217 

10 458:- 44:-
9 528:-•) 55:-
9 528:- 60:-
9 402:- 66:-
9 098:-

•) Published by Statistics Finland 

1.00 
1. 72 
2.10 
2.58 



As we can see, the unweighted calculation or the 
SRSWOR design gives the highest average salary 
at FlM 10,458. On the other hand, it also has the 
lowest standard error with an s.e. mean of FIM 44. 
In other designs the average salary approximates 
the reference figure under 'CENSUS LTK REGISTER', 

which is FIM 9 ,098. Since this is the exact figure 
for the subpopulation, it obviously contains no 
standard error. The design that comes closest to the 
reference figure gives STRCLUWGHT FIM 9,402, 
which is more sensitive than any other option to the 
sample design and which also has different weights 
for different firms. The deffs increase in direct 
proportion to the amount of information injected 

into the calculation design. This is partly related 
to the fact that the primary sampling unit has been 
the finn, but the weighting is done at the lower, 
employee level. 

5. Comparison of the results 

Moving on to look at average salaries in select
ed commercial occupational groups, the following 
compares the figures of three of the above sources: 
the Confederation of Commerce Em players regis try 
data, the Official Statistics calculations based on 
STRWOR and finally the STRCLUWGHT figures. 
The comparison covers the biggest occupational 
categories on which data have been obtained from 
at least 50 companies. 

Table 3. Average salaries in different occupational groups in August 1991: LTK member companies and 
the Statistics Finland sample. 

AVERAGE SALARY IN AUGUST 1991 
CENSUS FINSTAT'S SAMPLE 

OCCUPATIONAL GROUP LTK MEMBER STRCLUWGHT OFF.STAT. 

Total 9098 9402 9528 
7 Shop managers 9582 8835 8504 
10 Service station workers 6893 6977 6905 
13 Shop assistants 
14 Cleaners 6840 5417 5386 
15 Warehouse gorkers 7106 7112 7082 
16 Warehouse sup~rvisors .. 
17 Van\lorry drivers 7804 7138 7231 
25 Forwarders 8944 12866 13635 
39 Other branches 8407 7656 7748 
41 Upper white-collar 15131 14432 14395 
42 Otfice management 19212 19659 19774 
43 Office supervisors 13969 15000 15117 
44 Clerical staff 8881 10157 10151 
49 Motor-transport workers 9593 7917 7871 
----------------------------------------------------------

There arc clear differences between the figures 
based on the census data and the sample com
piled by Statistics Finland. However, since these 
differences only occur in a small number of occu
pational groups, it would seem useful to look more 
closely at the internal compatibility of occupational 
classifications used in different statistical sources. 
On average, the results from the STRCLUWGHT 
design come closer to the census figures than the 
Official Statistics results which use the STRWOR 
design. The use of a complete design significant
ly increases the standard errors of average salary 
estimates. One possible reason for this is that dur
ing the time lag between the compilation of the 
sampling frame and the sampling date, finns have 
have moved up or down from their original size 

category but retained the weight of that stratum. 
This was evident in the def f s in the sample design 
employed by Statistics Finland (deff = 1.72). The 
effect is further accentuated with the use of firm
specific weights, which increases the deffs and 
accordingly the standard errors of average salaries. 

5. Conclusions 

This paper presented four different statishcalanaly
ses of the same material by varying just one param
eter: the degree to which the sample design is taken 
into account. It was discovered that in the estima
tion of average salaries for different occupational 
groups, the sample design used byOfficialStatistics 
should be interpreted as stratified one- stage cluster 
sampling in which business firms are the primary 
sampling clusters. Since the size of these dusters 



varies, it is also necessary to adjust the raising fac
tors so that the weighting can be done at firm level. 
The estimate of average salary produced by this 
sort of design came closest to the reference figure 
based on census data. The relatively high deff es
timates ofthe cluster designs (2.10 $ deff < 2.58) 
lend further support to the argument that there is 
a powerful cluster effect that must be taken into 
consideration in the calculation of average salaries 
in business firms. Cluster effect here means that 
employees working in a certain occupation within 
the same firm (say, shop assistants) have more or 
less the same salary, whereas their salary is dearly 
different from the average pay of shop assistants in 
other firms. This observation also supports the view 
that the calculation of average salaries should use 
weights at the cluster level, as we have done here. 
Another factor that speaks in favour of cluster-level 
weights is the wide range of variation in firm (dus
ter) size. The most natural way to do this is to apply 
Horvitz -Thompson estimators. 
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Abstract: 
Knaub (1991) and Knaub (1992) introduced a method to 
measure heteroscedasticity which may often be superior 
to the usual Iterated Reweighted Least Squares (IRLS) 
method. This new method relies on decomposing 
heteroscedastic error into random and nonrandom 
components. A graphical analysis is then employed. 
This procedure, in conjunction with the IRLS method 
and other possible considerations appears to be useful 
in identifying certain substantial model failures. 
Establishment surveys are investigated here. 

NEW METHOD TO MEASURE 
HETEROSCEDASTICITY: 
Royall (1970) examined the usefulness of linear 
regression models for estimating totals. Zero-intercept 
modeling was emphasized. Totals are estimated by 
summing the observations and adding an estimate of the 
remainder. Observations not found in the sample 
(sampling and imputation being somewhat synonymous 

here) are modeled as y1=bx1+:4e
0

• (Note that when , 
gamma is 0.5, the result is the usual ratio estimator.) 
The IRLS method could be used to estimate gamma, 
but an alternative method will be described here. For 
this alternative approach to estimating gamma, each 
error is considered as a product of a random 
component, e0 , and a nonrandom component, x"~'. If a 
linear model with zero intercept and heteroscedasticity 
such that -y = w is appropriate, then if all Yi - bxi 
(error) values are divided by xt the resulting error 
components should be nearly homoscedastic with 
expected value approximately zero. If a homoscedastic, 
linear regression is fit to the absolute values of these 
error components on the vertical axis and the original 
regressor is still on the horizontal axis, then the slope 
should be near zero, as there should be no growth 
trend, either positive or negative, as x increases. Next, 
if these slopes are plotted on a vertical axis against 
gamma values on the horizontal axis, then the points 
where the plotted line crosses the horiwntal axis are of 
interest. To make these points more obvious and 
graphs easier to manage, the absolute values of the 
slopes are plotted against gamma. The shapes· of these 
plots are studied as they relate to model failure. Note 
that this method could easily be used to study other 
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functional forms for the nonrandom error component. 

GRAPHS ILLUSTRATING MODEL FAILURE: 
In the following, linear, zem-intercept mOdeling is 
demonstrated under various conditions. The second 
graph in each pair shows the absolute values of the 
'slopes' of interest (for the new method of estimating 
gamma) on they-axis, ABSYRL, against ganuna on the 
x-axis. 

Figure 1. Here the model fits very well. The wvft 
shaped graph is typical when this is the case. 
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Figure 2. Here a non-zero intercept is introduced. The 
IRLS method, assuming a zero-intercept linear model, 
imposes a line between the origin and the 'largest' of 
the data points resulting in a negative estimate of 
gamma. Note that the two values for gamma identified 
by the new methodology correspond to the two lines 
shown on the raw data graph. (Gamma = 1.36 was 
weakly indicated. In other cases a 'weakly' indicated 
gamma value may be closer to zero, and may be the 
best estimate of gam.tllJl to use.) 
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Figure 3. In this case, the data are contrived to show an 
obvious nonlinear relationship. Note that the three 
values for gamma indicated by the new methodology 
correspond to the three lines shown on the raw data 
graph. Gamma = 1.64 is nearly what is obtained for 
this particular case using the IRLS method with 
intercept zero. 
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Figure 4. a) A small sample size coupled with a 
possible outlier problem is shown here. b) Here, 
another possible outlier is shown. 
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Figure 5. If a few observations are much larger than 
the others, then the ABSYRL vs. Gamma plot tends to 
often be 'flat' past the estimated 'best' value of gamma. 
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Figure 6. Here is another example dealing with 
nonlinearity. 
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OBSERVATIONS, NOTES AND CONCLUSIONS: 
The preceding graphs illustrate that this new method of 
measuring heteroscedasticity may also indicate when 
substantial model failure has occurred. However, 
looking for a "V" shape is somewhat subjective. How 
unlike a "V" may such a graph be, and under what 
conditions? This is analogous, to an extent, to 
hypothesis testing. If the sample size dependency of 
results is ignored, a poorly informed decision may be 
reached. This problem is common to most hypothesis 
testing (Knaub 1987), other than. sequential hypothesis 
tests. Hypothesis tests dealing with heteroscedasticity 
suffer from this problem, unless some sensitivity 



analysis is included, thus increasing the importance of 
this graphical analysis and other considerations. Other 
information, such as a comparison of robust and 
nonrobust variance estimates, may help when studying 
model failure. 

Also, this method may be superior to the IRLS method, 
and alternative functional forms for the nonrandom 
component of error may be easily substituted. In cases 
such as those shown in Figures 3 and 4, the IRLS 
method may perfonn particularly poorly. (The IRLS 
method sometimes has difficulty with convergence. 
Also, it may often be relatively sensitive to the addition 
or deletion of a single response when sample sizes are 
small.) My new method, however, may yield multiple 
solutions, as in Figure 3: possibly one biased toward 
the points near the origin, one toward larger values, 
and one may be a more reasonable compromise. 
Perhaps a gamma value slightly larger than 0.5 may be 
best, especially in the case of substantial nonlinearity . 
Here, if one of the 'best' gamma vah,Jes indicated by 
my method is between 0.5 and 1.0, then one could 
subjectively choose a gamma value between that and 
0.5 (and/or try a transformation). When there is 
substantial nonlinearity, it seems that this inflates the 
apparent heteroscedasticity, as might be expected. It 
may be difficult to identify an appropriate linear 
transformation, and simply using the linear model with 
gamma = 0.5 often performs very well. If a 
transfonnation is used, a step function seems to work 
best as log and power transformations on the regressor 
alone tend to put curves not only where needed, but 
also, where they are not wanted. Transforming the 
dependent variable when model sampling to estimate 
totals may cause unwarranted difficulties. 

In Kirkendall (1992), Knaub (1990), and Knaub (1992), 
there are other indications of the usefulness of gamma 
= 0.5 as possibly a compromise value. Some degree 
of model failure is inevitable, but considerations 
discussed here may help to determine the level of 
reaction required. When sampling only a few of the 
largest establishments, as in Knaub (1992), Table l, 
gamma may not be well estimated, even if it is nearly 
uniform throughout the range of establishments in the 
universe. For imputation, gamma may be well 
estimated, but enough model failure will reduce its 
.relevance. Graphs in the previous section illustrated 
this. (Note that although it is usually best to estimate 
parameters with a different set of data than is used for 
estimation of totals or whatever is of interest, ~s does 
not seem to be practical here.) In Figure 3, it 'is also 
apparent that there is something else to consider. If 
one is estimating totals or means, then gamma between 

524 

0.5 and 0.84 is reasonable if the unsampled or 
'missing' responses could occur for any X;·, but if a 
projection for a larger x value is wanted, this would be 
different. 

For the case of a substantially nonzero intercept, this is 
perhaps the easiest problem to detect and to correct. 
Examining the ABSYRL vs. gamma portion of 
Figure 2, there is a decided disturbance in the right side 
of that graph. (Note that all ABSYRL vs. gamma plots 
in this paper show gamma from 0 to 2.) 

A 'large' difference between IRLS (a=O) results and 
those from the new method may also be an indication 
of model failure. Also, if one does not restrict the 
intercept to zero (i.e., "a" not necessarily equal to 
zero), then this is another way to examine that sort of 
model failure. 

Note that when there are a few observations much 
larger than the others (see Figure 5 for example), 
gamma = 0.5, as noted above, may be a 'good 
compromise' as the largest observations may have a 
different degree of beteroscedasticity and/or other 
model failure than the smallest observations. In this 
case, the ABSYRL vs. gamma plot ordinarily shows, as 
in Figure 5, a 'flattened' right end of the plot (when the 
x~axis shows gamma up to gamma=2). Perhaps a 
better way to manage some such cases would be to 
consider the largest observations as a separate, censused 
stratum and then to use a model for the remainder of 
the population without using those relatively very large 
observations in any calculations involving the stratum 
not censused. 

The plot used in this new method for estimating gamma 
is volatile with respect to small sample sizes. See 
Figure 4a. However, when sample sizes are 'large' and 
the variance is substantial, a "V" shaped ABSYRL vs. 
gamma plot, such as the one shown as part of Figure l, 
may result, even when nonlinearity seems obvious. 
However, such a case may illustrate some robustness 
for the linear regression, zero-intercept model. 

It is also important to note that, especially when the 
model fits very well, estimates of totals are often not 
very sensitive to changes in gamma. It can be seen that 
totals would not be influenced on average by gamma as 
long as there is symmetry in the distribution of data 
points about the fitted line. If the assumptions of 
linearity and a zero-intercept are reasonable and sample 
sizes are sufficient, then it would seem that near 
symmetry would be the usual case. Thus with large 
sample sizes when model failure is not a problem, the 



estimation of totals ~ms to be largely insensitive to 
gamma· This has appeared to be the case in practice. 

perhaps, the real usefulness of weighted least-squares 
regression is in not allowing data points with the largest 
variances to have undue influence on fitting the model. 
From Willett and Singer (1988), page 236, ~Whether 
the investigator wishes to downplay the importance of 
data points that are intrinsically more variable ... , or 
simply to decrease the effect on fit of remote data 
points ... ," one can see that this is simply a matter of 
confidence in the data. However, Figure 3 shows that 
the IRLS method can be very vulnerable to model 
failure. Therefore, it may not estimate very well what 
the weights on the largest observations should be. 

In Knaub (1992), it is noted that a robust variance 
estimator, V0 (Royall and Cumberland (1978, 1981)), 
does not really do much better than the more model 
dependent VL. Perhaps, as mentioned earlier, however, 
another consideration when studying model failure 
should be to examine how closely estimates from these 
two estimators tend to be. (Note, however, that cv 
estimates do not generally appear to be as good as the 
estimates of the totals themselves.) 

If all of the above considerations are employed, then 
the use of a linear, zero-intercept model for estimating 
totals from establishment sample surveys which 
concentrate on the largest possible respondents has, in 
practice, been shown to be very useful for energy data. 
The variety of applications and possible applications 
using energy data is substantial. There are cases where 
regressor data would be the same variate for a previous 
period, and those where the regressor is a different 
variate entirely. As with all establishment surveys, the 
data are highly skewed, and one may look at only the 
largest few possible respondents, or perhaps, in the case 
of imputation, look at data from all but a very few 
establishments. Even with this variety of 
circumstances, the estimated gamma values, by either 
the new method or the IRLS (zero-intercept) method are 
very often found to be between 0.5 and 1.0 for electric 
power data. 
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Economists commonly use regression analysis to 
estimate model parameters. The analysis is complicated 
significantly when the data are from a complex survey 
design because the estimation of the variance of 
parameters is not sjmple. Software, such as PC CARP 
(Fuller, et.al., 1986, Schnell et.al., 1988), exists to 
accowlt for the complex sample design in variance 
estimation of a single equation regression model. 
Software is limited for other more complex regression 
models, such as a model which pools cross-section and 
time-series data, when the data have a complex sample 
design. Pooling of cross-section and time-series data is 
of interest when sample sizes are small or when it is 
necessary to control for annuaJ changes, and when 
cross-section parameters are believed to remain constant 
over time. 

In the absence of the "ideal" software tools for data with 
a complex sample design, an economist faces several 
undesirable choices, such as ignoring the complex 
sample design or limiting the analysis to a single year. 
This paper presents the results of a comparison of 
variances between a pooled model and models based on 
single years of complex survey data using a new 
approach suggested by Kott (1992). We draw on two 
distinct examples to gauge the stability of our findings. 

Methodology 

Kott suggested a method for estimating parameters 
across multiple years when the data have a complex 
sample design (1992). He states that there are two 
conceptual issues which must be resolved before 
combining data across years. The first issue involves 
the definition of the target population. We use data 
from USDA's annual Farm Costs and Returns Survey 
(FCRS), whose target population is all establishments 
sold or normally would have sold at least $1,000 of 
agricultural products during the year. This definition 
encompasses the constant transition in the actual farm 
population. Consequently, the target population of the 
survey changes from year to year as peopJe enter and 
leave farming. For any particular year, the target 
population is a finite population. However, a target 
population for a single year can also be viewed as an 

infinite conceptual population of farms, of which the 
farms in the finite population for any year can be 
viewed as a single sample drawn from that population. 

The second issue to be resolved is the nature of the 
parameters to be estimated. If the economist is 
concerned with estimation of a parameter for a single 
year, combination of the data with other years to 
increase sample size makes little sense. However, if the 
economist is interested in the relationship, regardless of 
year(s), then pooling years may be justified. 

Kott proposes two approaches to estimation across 
years, one for finite population parameter estimates and 
one for model parameter estimates. It is the model 
parameters, relating to the underlying conceptual 
population, that we wish to estimate in this study. The 
model parameter estimation procedure is used because 
we wish to learn about the infinite conceptual 
population, of which the observed farms are simply 
realizations. 

The procedure for combining annual data from the 
FCRS for estimation using PC CARP follows: 

(1) Begin with a data set with several years of 
observations, including a variable YEAR to 
denote the year of an observation. 

(2) 

(3) 

To accommodate the survey design, PC CARP 
requires variables for stratum identification, 
cluster (primary sampHng unit), and weight 
(where weight is the inverse of selection 
probability). The variable names here follow 
Kott and the FCRS. 

Create stratum identification SUSTRM for 
observations on the list frame: 

SUSTRM = 100 +STATE and 

SUSTRM = 200 +STATE 

for observations on the area frame. 

Create cluster identification PSU: 

PSU = SEGMENT, 
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for the list frame, and 

PSU =STRATA * 10,000 +SEGMENT, 

for the area frame, where SEGMENT is the PSU for 
FCRS and STRATA is the stratum identifier. 

(4) Sort the data by SUSTRM and PSU. 

Kott remarks that the variance estimators using this 
procedure will tend to be conservative because not all 
the variance reducing potential of the stratification on 
the list or area side is being captured. 

Applications 

The first application concerns the effect of government 
fann commodity programs on the net cash farm income 
of U.S. fanns . The question has been posed by a 
former assistant secretary of agriculture and seems a 
simple one: "Did government programs improve farm 
income?" However, the measurement of this effect is 
quite difficult, given a multitude of programs, constant 
incremental changes in the programs, and indirect 
benefits received by farms which do not even participate 
in the programs. Farm income is highly variable, 
primarily due to weather, but prices are also quite 
volatile. We therefore needed several years' data to try 
and control for these effects. Coincident with the 
preliminary issues discussed above, our objective was 
the relationship involving the farm population, that is, 
the conceptually infinite population realized by our 
observations. 

Compared with quite a number of simultaneous equation 
models which are usually used to answer this type of 
question, but with little statistical basis, we chose 
ordinary least squares as our estimation procedure. We 
regressed net farm income on total value of production 
(TOTVPRD), a production efficiency measure (EFFTC), 
a binary variable representing participation in 
commodity programs (PARTIC), regional indicator 
variables (REG_), fraction of value of production from 
program crops (FRACI), and fraction of value of 
production from non~prograrn crops and livestock 
(FRAC2). Three years of data were used, 1987-1989. 

The second application used logistic regression on a 
model of off~ farm labor participation by farm operators. 
Most of the studies cited in the literature have used 
cross-sectional data. Heckman and Macurdy note that 
the major limitation of using cross-sectional data is the 
inability to analyze the response of labor to life-time 
Variation in costs and opportunities due to children, 

unemployment of the spouse, and general business cycle 
variation. All these factors are considered influential in 
the timing of labor force participation and not the 
volume supplied to the market. Hence, when annual 
data are used, the labor force participation decisions are 
implicitly assumed symmetrical in that the factors 
affecting labor force participation have equal but 
opposite effects on the probability of nonparticipation 
(Gould and Saupe). The use of panel or longitudinal 
data is therefore preferred since it will allow for the 
incorporation of the dynamic aspects of labor force 
participation. In addition, a single year's data is limited 
in the variation of local labor market conditions, since 
many of the sample farms may be located in a single 
labor market area. 

The dependent variable used in the off-farm labor 
participation model is binary and was coded 1 if fann 
operators had participated in off-faon employment, zero 
otherwise. The explanatory variables are operator's age 
(OPAGE) and the square of operator's age (OPAGESQ) 
to allow for life-cycle effects, operator's education 
(OPEDUC), size of operator's household (HHSIZE), 
unearned income from off the farm (OTHINC) 
including transfers (i.e. social security, pensions, etc.) 
and nonfann rental income, value of machinery per acre 
(KACRE), and a government payment dununy variable 
(GOVT). Variables that characterize local areas are also 
considered and they include county unemployment rate 
(UNEMP); percent of county income from agriculture 
(A GRIN); county employment change (EMPCHG); and 
percent of county employment in manufacturing 
(MANUF), construction (CONS1), services (SERV), 
and wholesale and retail trade (TRADE). We used 
three years of data for this application, 1987-89. 

Results and Conclusions 

The over-all tests of parameter significance were 
significant in both applications. In the net farm income 
models, the dummy variables associated with regions 
were mostly not significant in the estimations using 
annual data. This result would not be accepted by the 
agricultural policy community, as it is known that there 
are important regional differences in fann profitability 
and level of government payments. However, most of 
the regional variables were significant in the pooled 
estimation. 

In the off-farm labor supply models, the majority of the 
fann and household variables were significant. This 
was true for both the single year models and the pooled 
models. For the characteristics of the local labor 
markets, four of the eight var)ables were significant in 



the pooled model, compared to one in the single year 
models. 

Figures 1-2 show the estimated standard error for each 
variable for the annual fits and for the pooled data for 
both applications. For every variable, pooling of the 
data resulted in a substantial (at least 20 percent) 
reduction in variance from the largest annual error. 

Our results indicate that, in the cases where pooling is 
desirable, Kott's suggested approach to variance 
estimation is preferred to other alternatives, such as 
using small samples of a single year's data. 
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Figure 1. Farm income, comparison of standard errors, by variable, by year 
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Figure 2. Off-farm labor, comparison of standard errors, by variable, by year 
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