NON-INFERIORITY TEST BEYOND SIMPLE 2-SAMPLE COMPARISON*

Yi Tsong (<u>tsong@cder.fda.gov</u>) & Wen Jen Chen Office of Biostatistics, CDER, U.S. FDA

Presentation at 2005 FDA-Industry Workshop

*Disclaimer: The presentation represents the lecturer's professional opinion. It does not represent the regulatory position of U.S. FDA

OUTLINES

- I. Objectives and hypotheses of 2-arm non-inferiority trials
- II. Two approaches in design and analysis
- III. Issues beyond simple 2-sample comparison
 - Switching between superiority and NI
 - Group sequential and adaptive designs
 - Homogeneity testing
 - Change of designs
 - Data dependency

I. OBJECTIVES AND HYPOTHESES OF TWO-ARM NON-INFERIORITY TRIALS

(Tsong, Wang, Hung, Cui, JBS, 2003), (Hung, Wang, Tsong, Lawrence, O'Neill, SIM, 2003)

T (new test treatment) vs. C (active control) P (placebo) - not studied in current AC trial)

A. Efficacy (Required for all new treatment) Would T have been more effective than P, had P been present?

 μ_{P} or (μ_{P} - μ_{C}) = parameter not estimable with AC data

B. Preservation of Certain % of the Control Effect (Holmgren, J Biophar Stat 1999)

Does T retain >100 λ % of C-effect (i.e. ($\mu_T - \mu_P$)/($\mu_C - \mu_P$) > λ)?

$$\begin{split} H_{0}: (\mu_{T} - \mu_{P}) &\leq \lambda (\mu_{T} - \mu_{P}) \\ \text{vs. } H_{a}: (\mu_{T} - \mu_{P}) &> \lambda (\mu_{T} - \mu_{P}) \\ \text{i.e. } H_{0}: (\mu_{T} - \mu_{C}) &\leq (\lambda - 1)(\mu_{T} - \mu_{P}) \\ \text{vs. } H_{a}: (\mu_{T} - \mu_{C}) &> (\lambda - 1)(\mu_{T} - \mu_{P}) \\ \end{split}$$

"Reservation of % C - effect" implies Efficacy

Note: $\lambda = 0 \Rightarrow$ Efficacy,

 $\lambda = 1 \Rightarrow$ Superior over Control

 $(\lambda -1) (\mu_T - \mu_P)$ – not estimable with the AC data

C. Not much less effective

Is T "not much less effective" than C?

$$\begin{split} H_{0}: & (\mu_{T} - \mu_{P}) \leq (\mu_{C} - \mu_{P}) - \delta \\ & vs. H_{a}: (\mu_{T} - \mu_{P}) > (\mu_{C} - \mu_{P}) - \delta \\ & H_{0}: (\mu_{T} - \mu_{C}) \leq -\delta vs. H_{a}: (\mu_{T} - \mu_{C}) > -\delta \end{split}$$

 $\delta > 0$, a value determined based on data of C vs. P (i.e. $\delta < (\mu_C - \mu_P)$) historical studies and medically judgement

(Blackwelder, Controlled Clinical Trials, 1982) (Tsong, Higgins, Wang, Hung, Cui, JSM Proceedings, 1999) (Fisher, Gent, Buller, American Heart Journal, 2001) In order to have C: "Not much less effective" implying A: "Efficacy", it requires

 $-\delta \ge (\mu_{p} - \mu_{c}),$

(not estimable from internal data of AC trial)

ICH E9 (1998): Statistical Principles Smaller than differences observed in superiority trials of the active comparator

ICH E10 (2000): Choice of Control Group Smaller than that suggested by the smallest expected effect size of the active control

One Set of Hypotheses Fits All

$$\begin{array}{l} \mathsf{H}_{0}: \ (\mu_{T} - \mu_{c}) \leq -\delta \ \text{vs.} \ \mathsf{H}_{a}: \ (\mu_{T} - \mu_{c}) > -\delta \\ \text{or} \ \mathsf{H}_{0}: \ (\mu_{T} - \mu_{c}) \leq (\lambda - 1) \ (\mu_{c} - \mu_{p}) \\ \text{vs.} \ \mathsf{H}_{a}: \ (\mu_{T} - \mu_{c}) > (\lambda - 1)(\mu_{c} - \mu_{p}) \end{array}$$

A: (Efficacy) :
$$\delta = (\mu_{c} - \mu_{p}), \lambda = 0$$

B: (Preservation of 100 λ % of Control Effect) : $\lambda = 1 - \delta/(\mu_c - \mu_p) > 0$

C: (Not much less effective):
-
$$\delta = (\lambda - 1)(\mu_{c} - \mu_{p}) > - (\mu_{c} - \mu_{p})$$

- All 3 objectives needs to imply treatment efficacy A.
- In practice, 3 different objectives may actually represent the same objective with adjustment for the uncertainty of ϵ such that

$$(\mu_{c} - \mu_{p}) / (\mu_{c|H} - \mu_{p|H})) \geq \varepsilon$$

(e.g. discounting and proportion preservation).

III. TWO APPROACHES IN DESIGN AND ANALYSIS

A. <u>Generalized historical control</u> <u>Approach</u>

(Non-inferiority margin approach, Fixed margin approach)

- Considers δ, a <u>fixed value</u> pre-specified before data collection
- $\delta \leq \delta_{M}$, medically relevant margin
- Define $\mathbf{d} = \mathbf{e} L_{C-P}$, $L_{C-P} =$ the lower 1 α_0 CL of $(\mu_{c|H} \mu_{p|H})$,
 - $(\mu_{c} \mu_{p})/(\mu_{c|H} \mu_{p|H}) \geq \epsilon > 0 \text{ with } \delta \leq \delta_{M}$

• e.g. $\epsilon = 0.5$ (FDA Cardio-Renal Advisory Committee (1992))

• e.g. $L_{(C - P)} = 99.5\%$ lower confidence limit (Thrombolytics Example)

– (Ng, Drug Information Journal, 2001), (Wiens, Controlled Clinical Trials, 2002), (Jones, Jarvis, Lewis, Ebbutt, British Medical Journal, 1996)

Test Stat.

$$t(\boldsymbol{d}) = (\boldsymbol{m}_T - \boldsymbol{m}_C + \boldsymbol{d}) / [s.e.(\boldsymbol{m}_T - \boldsymbol{m}_C)]$$

t(δ) is compared with t(d, 0.975) for rejecting H₀. d = n_T + n_C - 2 if $\sigma_T = \sigma_C$.

Otherwise

$$d = (s_T^2/n_T + s_C^2/n_C)^2/[(s_T^2/n_T)^2/(n_T - 1) + (s_C^2/n_C)^2/(n_C - 1)].$$

B. Cross-Trial Comparison Approach

(Synthesis approach, Retention test, Variable margin, etc.)

- $\delta = a \text{ parameter}$ to be estimated (with historical data)
- Consider historical C-P trials as part of the data collected independently to the current AC trial
- $\delta \leq \delta_M$, medically relevant margin
- Often define $\delta = (1 \lambda)(\mu_{c|H} \mu_{p|H})$
- Active control treatment is used in both P-C and AC trials (3- or 4- parameter study?)
- Often assume $(\mu_{c} \mu_{p}) = (\mu_{c|H} \mu_{p|H})$
- In fact ($\mu_c \mu_p$)/($\mu_{c|H} \mu_{p|H}$) = ϵ (unknown) > 0

Study Placebo Active Control Test C vs P #1 N_{1P} N_{1C} C vs P #2 N_{2P} N_{2C} $C vs P #. N_P$ N_{c} $C vs P #. N_{P}$ N_C $C vs P \# K N_{KP}$ N_{KC} T vs C #K+1 $N_{(K+1)C}$ $N_{(K+1)T}$

Testing H₀: $(\mu_{T} - \mu_{C}) \pounds (\mathbf{l} - 1)(\mu_{c|H} - \mu_{p|H})$ **vs. H_a:** $(\mu_{T} - \mu_{C}) \pounds (\mathbf{l} - 1)(\mu_{c|H} - \mu_{p|H}), 0 \pounds \mathbf{l} \pounds \mathbf{l}$

Four-arm trial ?

Assume that $e_1 = s.e.(\vec{m}_T - \vec{m}_C)$, $e_2 = s.e.(\vec{m}_{C|H} - \vec{m}_{P|H})$ Test statistic $-z(\vec{d}) = [(\vec{m}_T - \vec{m}_C) - (\vec{l} - 1)(\vec{m}_{C|H} - \vec{m}_{P|H})]/\sqrt{e_1^2 + (\vec{l} - 1)^2 e_2^2}$

Compare $z(\delta)$ with $Z_{0.975}$ for rejecting H_0 with large n's.

- T test can be derived (Pigeot, Schafer, Rohmel, Hauschke, SIM, 2003)
- Special cases:
 - Assume $\varepsilon = 1$, $\lambda = 0$, but uses $(e_1 + e_2)$ instead of $\sqrt{e_1^2 + e_2^2}$ (Hauck & Anderson, DIJ, 1999) – "2 – CI Approach"

- Assume $\varepsilon = 1$, $\lambda > 0$, 2- CI approach using $[e_1 + (1-\lambda)e_2]$ instead of $\sqrt{e_1^2 + (I-1)^2 e_2^2}$. Use pos hoc determined confidence level for the 2nd CI (Rothman et al, JBS, 2004)

- Assume $\epsilon = 1$ (Holmgren, JBS, 1999)
- Assume $\lambda = 0$, $\epsilon = 1$ (Hasselblad & Kong, DIJ, 2001)

• Control type I error rate for testing

H₀: $(\mu_{T} - \mu_{C})$ **£** (**l** - 1) $(\mu_{c|H} - \mu_{p|H})$ Not for testing

H₀: $(\mu_{T} - \mu_{C})$ **£** (**1** - 1) $(\mu_{c} - \mu_{p})$

• Interpret the result for testing

- If $\varepsilon < 1 \lambda$, $(1/\varepsilon)(1 1) < -1$, can't imply efficacy \Rightarrow invalid NI test
- If $\varepsilon < 1$, avoid $\lambda = 0$ hypothesis

III. Issues beyond simple 2-sample Comparison

- *i. Switching Between Superiority and Non-Inferiority*StudyPlaceboActive ControlTestC vs P #1 N_{1P} N_{1C} N_{1C} C vs P #. $N_{.P}$ C vs P #. $N_{.P}$ C vs P #K N_{KP} T vs C #K+1 $N_{(K+1)C}$ NUP testing H (2-1)using only AC data
- SUP testing $H_0(\lambda=1)$ using only AC data
- NI testing:
 - With GHC approach using AC data and a fixed value δ
 - With X-trial comparison approach using C-P and AC data

- With GHC approach switching = simultaneous test ? same type I error rates
- With X-trial comparison approach switching ? simultaneous test with fixed sample size (equality holds only asymptotically) ? type I error rates change

(Tsong & Zhang, 2005, BiomJ; Tsong & Zhang, 2005, BiomJ, to be submitted)

ii. Group Sequential Design

A. With GHC approach –

Application of group sequential designs has been well described in Wang et al (2001), Li and Tsong (2003), Shih et al (2004), and Tsong et al (2004).

B. With X-trial comparison approach

Consider the data used in the analysis:

Study Placebo Active Control Test C vs P #1 C vs P #2 C vs P #. C vs P #K N_H + $= 2N_{H}$ N_H $N_{AC(1)} = 2N_{AC(1)}$ T vs C $N_{AC(1)}$ + $N_{AC(2)} = 2N_{AC(2)}$ $N_{AC(2)}$ +

Assume

 $\begin{array}{l} - \ X_{T} \sim N(T, \ \sigma_{1}), \ X_{C} \sim N(C, \ \sigma_{1}), \ X_{C(H)} \sim N(C_{H}, \ \sigma_{2}), \ X_{P(H)} \sim N(P_{H}, \ \sigma_{2}). \\ - \ Sample \ sizes \ N_{H}, \ N_{AC} = \ N_{AC(1)} + N_{AC(2)} \end{array}$

- How to define information time τ ?
- τ = 0 before interim look ?
- τ = (N_H + N_{AC(1)})/(N_{AC} + N_H) at N_{AC(1)} ?
- $-\tau = 1$ at final analysis
- In practice, if N_H >> N_{AC}, and 0.5 << (N_H + N_{AC(1)})/(N_{AC} + N_H) ≈ 1 ⇒ limited usage of interim look.
- Test statistic

$$z(\boldsymbol{d})|_{\boldsymbol{t}} = [(\hat{\boldsymbol{m}}_{T} - \hat{\boldsymbol{m}}_{C})|_{\boldsymbol{t}} - (\boldsymbol{l} - 1)(\hat{\boldsymbol{m}}_{C|H} - \hat{\boldsymbol{m}}_{P|H})] / \sqrt{e_{1|\boldsymbol{t}}^{2} + (\boldsymbol{l} - 1)^{2}e_{2}^{2}}$$

is not stationary and does not convergent to a Brownian Motion.

- •How to adjust for type I error rate?
- Can't not be planned with a sequential or adaptive design

- iii. Consistency among centers
 - A. With GHC approach –

Homogeneity of treatment efficacy in active controlled trials using GHC has been studied by many statisticians

- Quan and Shih (2001); Wiens and Heyes (2003)

- B. With X-trial comparison approach
 - With an incomplete unbalanced block design, test treatment and the placebo are not studied within the same center.
 - Since the within center ($\mu_T \mu_C$) is estimable, one can examine the homogeneity of treatment effect ($\mu_T \mu_C$) among the centers when testing H₀(λ =1).
 - $(\mu_{C|H} \mu_{P|H})$ is estimated using data of historical trials, one can't estimate $(\mu_T - \mu_C) - (\lambda - 1)(\mu_{C|H} - \mu_{P|H})$ independently within each center
 - Homogeneity of $(\mu_T \mu_C) (\lambda 1)(\mu_{C|H} \mu_{P|H})$ among the centers can't be tested for the non-inferiority null hypothesis H₀ (λ): $(\mu_T - \mu_C) = (\lambda - 1)(\mu_{C|H} - \mu_{P|H})$.

iv. Data Transformation & Change of Design

- If $X_{C|H} \sim N(\mu_{C|H}, \sigma_2)$ and $X_{P|H} \sim N(\mu_{P|H}, \sigma_2)$
 - If $X_C \sim N(\mu_C, \sigma_1)$ and $X_T \sim N(\mu_T, \sigma_1)$,

use t-test or z approximation test

- Otherwise ? Ward Statistic and approximate Z test
- If $X_{C(H)} \sim F$ ($\mu_{C|H'}$ σ_2) and $X_{P(H)} \sim F(\mu_{P|H'}$ σ_2)
 - With GHC approach
 - Data can be transformed
 - With X-trial comparison approach
 - Data can't be transformed
- Change of study design or analysis method from historical C vs. P trials
 - With GHC approach
 - Parallel arms to paired or crossover, ANOVA to ANCOVA, etc
 - With X-trial comparison approach
 - Not feasible

v. Data independence

- Dependence on the historical C vs. P trials –
- A. With GHC approach
 - d is a fixed value determined with both data of historical trials and medical judgement
 - NI testing performed without involving historical data directly
- B. With X-trial comparison approach
 - d (i.e. $(\lambda 1)(\mu_{C|H} \mu_{P|H}))$ is a function of parameters to be estimated with historical trial data
 - NI testing performed with historical trial data involved directly

- Dependency of two NI trials
 - (the regulatory requirement of at least 2 positive independent pivotal phase III clinical trials)
 - A. With GHC approach
 - 2 trials share a fixed d
 - B. With X-trial comparison approach
 - 2 trials share data of the same historical A vs. P trials

SUMMARY GHC vs. X-trial Comparison

	Historical Control	Cross-Study
Margin δ	fixed, pre-set	variable, in the study
Null hypothesis	$T-C\leq \text{-} \delta$	$T - C \le (\lambda - 1)(C - P)_H$
NI? SUP	a won't change	a will change
Homogeneity test	Same as ANOVA	Can't do
Group sequential	Regular	Adjust information time
/adaptive design		Needs new boundary
Transform Data	More complicated	Can't do
Design change	Possible	Can't do
Two phase III	Yes	Dependence

Thank you for your interest!!!

* The views expressed in this paper are the presenter's professional opinions.

They do not represent the official positions of the U. S. Food and Drug Administration

Interesting Example

Sponsor proposed NI test H₀: OR_{TP}³ 1/ÖOR_{CP|H}, i.e. OR_{TC}³ (OR_{CP|H})^{3/2} ??

- Estimate 95% CI of $logOR_{CP|H}$, ($LlogOR_{CP|H}$, $UlogOR_{CP|H}$)
- $-\delta = (1/2) \text{ UlogOR}_{CP(H)}$ -- (historical control)
- Estimate 95% CI of $logOR_{TP}$, (LlogOR_{TP}, UlogOR_{TP}) with

 $logOR_{TP} = logOR_{TC} + logOR_{CP|H}$ --(cross-study)

- Show that min{|LlogOR_{TP}|, |UlogOR_{TP}|} > δ -- (hybrid)
- Sponsor declare NI if logOR_{TP} < δ
- It is equivalent to show exp (logOR_{TP}) < exp(- δ)